(c) But now we want to show that we don’t need the assumption of soundness: consistency is enough. To show this, we first prove the following general result, which is the analogue of Theorem 21.1:

Theorem 21.2 Let T be a nice theory, and let γ be any fixed point for $\neg R Prov_T(x)$. Then $T \not\vdash \gamma$ and $T \not\vdash \neg \gamma$.

Proof for first half Suppose γ is any theorem. Then – dropping subscripts for readability – for some m, $Prf(m, \pull\gamma)$. Since Prf captures Prf, $T \vdash Prf(m, \pull\gamma)$.

Also, since T is consistent, $\neg \gamma$ is unprovable, so for all n, not-$Prf(m, \pull\gamma)$. Since Prf captures Prf, then for each $n \leq m$ in particular, $T \vdash \neg Prf(n, \pull\gamma)$.

Using the result (O4) of Section 9.4, that shows $T \vdash (\forall w \leq m) \neg Prf(w, \pull\gamma)$.

Putting these results together, $T \vdash Prf(m, \pull\gamma) \land (\forall w \leq m) \neg Prf(w, \pull\gamma)$. So, existentially quantifying, $T \vdash R Prov(\pull\gamma)$.

But now suppose that γ is indeed a fixed point for $\neg R Prov(x)$, i.e. $T \vdash \gamma \leftrightarrow \neg R Prov(\pull\gamma)$. Then if γ is provable, we’d also have $T \vdash \neg R Prov(\pull\gamma)$. Contradiction. So a fixed point γ is not provable: $T \not\vdash \gamma$.

Proof for second half Now suppose $\neg \gamma$ is a theorem, for some γ. Then for some m, $Prf(m, \pull\gamma)$, so $T \vdash Prf(m, \pull\gamma)$.

Also, since T is consistent, γ is unprovable, so for all n, not-$Prf(n, \pull\gamma)$. Hence, by a parallel argument to before, $T \vdash (\forall v \leq m) \neg Prf(v, \pull\gamma)$. Elementary manipulation gives $T \vdash \forall v(Prf(v, \pull\gamma) \rightarrow \neg v \leq m)$. Now appeal to (O8) of Section 9.4, and that gives $T \vdash \forall v(Prf(v, \pull\gamma) \rightarrow m \leq v)$.

Combining these two results, it immediately follows that $T \vdash \forall v(Prf(v, \pull\gamma) \rightarrow (m \leq v \land Prf(m, \pull\gamma)))$. That implies $T \vdash \forall v(Prf(v, \pull\gamma) \rightarrow (\exists w \leq v) Prf(w, \pull\gamma))$. So given our definition, $T \vdash \neg R Prov(\pull\gamma)$.

Suppose again that γ is a fixed point for $\neg R Prov(x)$, i.e. $T \vdash \gamma \leftrightarrow \neg R Prov(\pull\gamma)$. Then if $\neg \gamma$ is provable, we’d also have $T \vdash R Prov(\pull\gamma)$. Contradiction. So if γ is a fixed point, $\neg \gamma$ is not provable: $T \not\vdash \neg \gamma$.

(d) So we now know that any fixed point for $\neg R Prov_T$ must be formally undecidable in T. But the Diagonalization Lemma has already told us that there has to be such a fixed point R_T. Hence, assuming no more than T’s niceness, it follows that T is negation-incomplete.

Which is almost what we wanted to show. But not quite. For recall our official statement of the Gödel-Rosser Theorem:

Theorem 19.6 If T is a nice theory, then there is an L_A-sentence φ of Goldbach type such that neither $T \vdash \varphi$ nor $T \vdash \neg \varphi$.

This says not just that a nice theory T has an undecided sentence, but that it has a Π_1 undecided sentence. And how do we show that?

This time it isn’t enough simply to appeal to the corollary of Theorem 20.4, i.e. to the principle that Π_1 predicates have Π_1 fixed points. For $\neg R Prov(x)_T$
isn’t Π_1 (or at least, not evidently so),\(^5\) so we can’t conclude that its fixed point R_T is Π_1. Hence we are going to have to do a bit more work to demonstrate the full-strength Gödel-Rosser Theorem.

Proof. Let’s look at the proof of the previous theorem again, and generalize the leading idea.

Suppose, then, that instead of using the two-place predicates Prf and $\neg Prf$ we use any other pair of two-place predicates P and $\neg P$ which respectively “enumerate” the positive and negative T-theorems, i.e. satisfy the following conditions:

1. if $T \vdash \gamma$, then for some m, $T \vdash P(m, \ulcorner \gamma \urcorner)$.
2. if $T \not\vdash \gamma$, then for all n, $T \vdash \neg P(n, \ulcorner \gamma \urcorner)$.
3. if $T \vdash \neg \gamma$, then for some m, $T \vdash \neg P(m, \ulcorner \gamma \urcorner)$.
4. if $T \not\vdash \neg \gamma$, then for all n, $T \vdash P(n, \ulcorner \gamma \urcorner)$.

Now define $RP_T(x) =_{\text{def}} \exists v(P(v, x) \land (\forall w \leq v) \neg \neg P(w, x))$. This gives us another Rosser-style predicate, and the argument will go through *exactly* as before: for a nice theory T, any fixed point of $\neg RP_T(x)$ will be undecidable.

This tells us what we need to look for. Suppose we can find predicates P and $\neg P$ which satisfy our four “enumeration” conditions, but which are Δ_0 (i.e. lack unbounded quantifiers). Then the corresponding $RP_T(x)$ will evidently be Σ_1: so its negation $\neg RP_T(x)$ will be Π_1 and will indeed have Π_1 undecidable fixed points.

It just remains, then, to find a suitable pair of Δ_0 predicates P and $\neg P$. Well, consider the Σ_1 formula $Prf_T(x) =_{\text{def}} \exists v Prf(v, x)$. That expresses the property $Prov_T$, i.e. the property of G"odel-numbering a T-theorem (see Section 20.1). Since it is Σ_1, $Prf_T(x)$ is logically equivalent to a wff with a bunch of initial existential quantifiers followed by a Δ_0 wff. And we can now apply the same trick we invoked in proving Theorem 10.1 to get a wff that expresses the same property $Prov_T$ but which starts with just a *single* existential quantifier, i.e. has the form $\exists v P(u, x)$ where P is Δ_0.

But note that when γ is a theorem, $\exists u P(u, \ulcorner \gamma \urcorner)$ is true, so for some m, $P(m, \ulcorner \gamma \urcorner)$ is true. So, being nice and hence Δ_0-complete, T proves that last wff. And if γ isn’t a theorem, $\exists u P(u, \ulcorner \gamma \urcorner)$ is false, so for every n, $P(n, \ulcorner \gamma \urcorner)$ is false, so each $\neg P(n, \ulcorner \gamma \urcorner)$ is true. Being Δ_0-complete, T proves all those latter wffs too.

Hence P is Δ_0 and satisfies the “enumerating” conditions (1) and (2). We can similarly construct a Δ_0 wff $\neg P$ from $\exists v \neg P(v, x)$. So we are done. \(\Box\)

Phew!

\(^5\) *Why? Well, $RProv_T(x)$ is defined as $\exists v (Prf_T(v, x) \land (\forall w \leq v) \neg \neg P(w, x))$, and its component wff $\neg \neg P(w, x)$ is Π_1. So, after the initial existential quantifier, $RProv_T(x)$ in effect has an unbounded universal quantifier buried inside. Hence $RProv_T(x)$ isn’t strictly Σ_1: and it isn’t evidently logically equivalent to a strictly Σ_1 wff either. So it’s negation isn’t evidently Π_1.*