Exercises: Formal theories

These exercises start to explore (informally, and in a very introductory way) a few aspects of the ideas of a formalized language and of a formalized theory.

Reading

1. *IGT2*, Ch. 4.

Exercises

1. Consider a first-order language L for the theory of addition, whose logical apparatus comprises a suitable set of classical connectives, quantifiers, and identity. Its non-logical apparatus is to comprise the constants ‘0’ and ‘1’, the two-place function ‘+’, and the two-place relation ‘$<$’.
 (a) Define the terms of L.
 (b) Show that it is algorithmically decidable which expressions are L-terms.
 (c) Define the atomic wffs of L.
 (d) Show that it is algorithmically decidable which expressions are atomic L-wffs.
 (e) Define the wffs of L [allowing wffs with free variables].
 (f) Show that it is algorithmically decidable which expressions are L-wffs.
 (g) Show that it is algorithmically decidable what is an L-wff which contains the variable ‘x’ free.
 (h) Show that it is algorithmically decidable which expressions are L-sentences (i.e. closed wffs without free variables).

2. Consider the following (uninterpreted) theory H. The alphabet of H’s language consists of the symbols M, U, I, and any finite string of symbols is a wff. The theory has one axiom: MI. H also has five rules of inference (σ indicates a string of symbols, possibly empty).
 1. Given a wff of the form σI, you can infer the wff σIU. (For example, from MUI infer $MIUIU$.)
 2. Given a wff of the form $M\sigma$, infer $M\sigma\sigma$. (For example, from $MIUU$ infer $MIUIIIU$.)
 3. Given a wff which includes the string UI, infer the wff that results from replacing that string with IU. (For example, from $MIUIU$ infer $MIUIU$.)
 4. Given a wff which includes the string UU, infer the wff that results from deleting that string. (For example, from $MIUUU$ infer MIU.)
 5. Given a wff which includes the string III, infer the wff that results from replacing that string with a U. (For example, from $MIUIUU$ infer $MIUU$.)
 (a) Does H count as an effectively axiomatized (uninterpreted) formal theory?
(b) Prove every H-theorem starts with the symbol M, and contains no other occurrence of M.

Don’t get bogged down on these next three little brain-teasers, but have a go before moving on:

(c) Can you derive MIU as a theorem?
(d) Can you derive MUUIU?
(e) Can you derive MU?

Now three more questions about H:

(f) Show that, for each rule, if it is applied to a wff whose number of contained ‘I’-s is not a multiple of 3, the result is a wff whose number of ‘I’-s is also not a multiple of 3.

(g) Can you derive MIUIUIII?
(h) Now revisit question (e) again.

3. [This is really for philosophers: mathematicians will have seen this all before, in one guise or another.]

Consider the formal first-order theory G whose non-logical vocabulary comprises just a two-place function expression ‘·’ and a constant ‘e’. We’ll in fact write the function ‘infix’ like ordinary multiplication, so we put e.g. ‘(x · y)’ rather than ·(x, y). We will also allow the dropping of outer brackets. The axioms of G are:

1. ∀x∀y x · (y · z) = (x · y) · z
2. ∀x x · e = x
3. ∀x∃y x · y = e

(a) Is G an effectively formalized theory?
(b) Prove ∀x∃y x · y = e.
(c) Prove ∀x e · x = x.
(d) Prove that the ‘unit’ e is unique: in other words, if e and e’ both satisfy (2) and (3), then e = e’.
(e) Prove that ‘inverses’ are unique: i.e., ∀x∀y∀y’((x · y = e ∧ x · y’ = e) → y = y’).
(f) Prove G is consistent by giving three interestingly different interpretations for the language of G on which G’s axioms are all true.
(g) Is ∀x∀y x · y = y · x a G-theorem?
(h) Is G negation complete?

4. A reality check. Suppose T is an effectively axiomatized formal theory. Can T be

(a) Inconsistent and negation-complete?
(b) Consistent, negation-incomplete and decidable?
(c) Inconsistent and undecidable?
(d) Consistent and undecidable?
(e) Consistent, negation-complete and undecidable?