Outline

- Our next task
- Basic subject/predicate structure
- How not to add quantifiers
The intended content of arguments presented in the vernacular is often obscure; the individual premisses and/or conclusion often unclear or ambiguous.
Our next task

Divide and rule

- The intended content of arguments presented in the vernacular is often obscure; the individual premisses and/or conclusion often unclear or ambiguous.

- So, presented ‘raw’, everyday arguments often leave us with a double task; clarifying what is being said, and then assessing the clarified argument.
The intended content of arguments presented in the vernacular is often obscure; the individual premisses and/or conclusion often unclear or ambiguous.

So, presented ‘raw’, everyday arguments often leave us with a double task; clarifying what is being said, and then assessing the clarified argument.

Our way – the standard way – of handling this double task, already illustrated in the case of basic propositional logic:
Our next task

Divide and rule

- The intended content of arguments presented in the vernacular is often obscure; the individual premisses and/or conclusion often unclear or ambiguous.
- So, presented ‘raw’, everyday arguments often leave us with a double task; clarifying what is being said, and then assessing the clarified argument.
- Our way – the standard way – of handling this double task, already illustrated in the case of basic propositional logic:
 1. Clarify at least the relevant logical structure of premisses and conclusion by regimenting the argument into an appropriate formalized language.
Our next task

Divide and rule

- The intended content of arguments presented in the vernacular is often obscure; the individual premisses and/or conclusion often unclear or ambiguous.
- So, presented ‘raw’, everyday arguments often leave us with a double task; clarifying what is being said, and then assessing the clarified argument.
- Our way – the standard way – of handling this double task, already illustrated in the case of basic propositional logic:
 1. Clarify at least the relevant logical structure of premisses and conclusion by regimenting the argument into an appropriate formalized language.
 2. Assess the argument as couched in the formalized language.
The formalized languages of logic are intended to be contentful languages in which real arguments can be presented. Using a formalized language isn't just playing a game with uninterpreted symbols.
Our next task

Formalized languages

- The formalized languages of logic are intended to be contentful languages in which real arguments can be presented. Using a formalized language isn’t just playing a game with uninterpreted symbols.

- So to specify a formal language, we give its **syntax** (rules for defining its wffs) and its **semantics** (rules that determine what the wffs mean).
Our next task

Formalized languages

- The formalized languages of logic are intended to be contentful languages in which real arguments can be presented. Using a formalized language isn’t just playing a game with uninterpreted symbols.
- So to specify a formal language, we give its syntax (rules for defining its wffs) and its semantics (rules that determine what the wffs mean).
- In a properly designed formal language,
Our next task

Formalized languages

- The formalized languages of logic are intended to be contentful languages in which real arguments can be presented. Using a formalized language isn't just playing a game with uninterpreted symbols.
- So to specify a formal language, we give its syntax (rules for defining its wffs) and its semantics (rules that determine what the wffs mean).
- In a properly designed formal language,
 1. syntactic form determines semantic structure,
The formalized languages of logic are intended to be contentful languages in which real arguments can be presented. Using a formalized language isn't just playing a game with uninterpreted symbols. So to specify a formal language, we give its syntax (rules for defining its wffs) and its semantics (rules that determine what the wffs mean). In a properly designed formal language,

1. syntactic form determines semantic structure,
2. the rules determine unique interpretation for each wff.
Our next main task is to develop the formal language QL for representing propositions whose logically relevant structure includes not just the familiar connectives but quantifiers (like ‘all’, ‘each’, ‘some’, ‘none’, ‘only’, …).
Our next main task is to develop the formal language QL for representing propositions whose logically relevant structure includes not just the familiar connectives but quantifiers (like ‘all’, ‘each’, ‘some’, ‘none’, ‘only’, . . .).

We’ll need to define the syntax of QL: which strings of symbols are well-formed formulae (wffs)?
Our next main task is to develop the formal language QL for representing propositions whose logically relevant structure includes not just the familiar connectives but quantifiers (like ‘all’, ‘each’, ‘some’, ‘none’, ‘only’, . . .).

We’ll need to define the syntax of QL: which strings of symbols are well-formed formulae (wffs)?

We’ll need to define the semantics of QL: how are we to interpret the wffs?
Our next task

Arguments involving quantifiers

▶ Consider arguments like

- All good philosophers like logic
- Bertrand is a good philosopher
- Bertrand likes logic
- Every analytic philosopher admires some logician
- No logician is admired by Jean-Paul
- Jean-Paul is not an analytic philosopher
- Only Bob and Ted love Mary
- Mary kissed someone who loves her
- Mary kissed either Bob or Ted

▶ They depend for their validity on the sub-propositional structure of the premisses and conclusions.

▶ QL needs to have ways of representing sub-propositional structure.

Peter Smith: Formal Logic, Lecture 14
Arguments involving quantifiers

- Consider arguments like

 All good philosophers like logic
 Bertrand is a good philosopher
 Bertrand likes logic
Our next task

Arguments involving quantifiers

- Consider arguments like

 All good philosophers like logic
 Bertrand is a good philosopher
 Bertrand likes logic

 Every analytic philosopher admires some logician
 No logician is admired by Jean-Paul
 Jean-Paul is not an analytic philosopher

They depend for their validity on the sub-propositional structure of the premisses and conclusions.

QL needs to have ways of representing sub-propositional structure.
Our next task

Arguments involving quantifiers

Consider arguments like

All good philosophers like logic
Bertrand is a good philosopher
Bertrand likes logic

Every analytic philosopher admires some logician
No logician is admired by Jean-Paul
Jean-Paul is not an analytic philosopher

Only Bob and Ted love Mary
Mary kissed someone who loves her
Mary kissed either Bob or Ted
Our next task

Arguments involving quantifiers

- Consider arguments like

 All good philosophers like logic
 Bertrand is a good philosopher
 Bertrand likes logic

 Every analytic philosopher admires some logician
 No logician is admired by Jean-Paul
 Jean-Paul is not an analytic philosopher

 Only Bob and Ted love Mary
 Mary kissed someone who loves her
 Mary kissed either Bob or Ted

- They depend for their validity on the sub-propositional structure of
 the premisses and conclusions.
Our next task

Arguments involving quantifiers

Consider arguments like

- All good philosophers like logic
- Bertrand is a good philosopher
- Bertrand likes logic

- Every analytic philosopher admires some logician
- No logician is admired by Jean-Paul
- Jean-Paul is not an analytic philosopher

- Only Bob and Ted love Mary
- Mary kissed someone who loves her
- Mary kissed either Bob or Ted

They depend for their validity on the sub-propositional structure of the premisses and conclusions.

QL needs to have ways of representing sub-propositional structure.
Our next task

Basic subject/predicate structure

How not to add quantifiers
QL will need, for a start, two classes of expressions constants (or names) and predicates.

Constants/names serve to pick out particular people/things (Bertrand, Jean-Paul, Fido, Mount Everest, the martini glass on the table, a particular water atom, the number three, . . . , any individual thing).
Names, predicates – 1

- QL will need, for a start, two classes of expressions **constants** (or names) and **predicates**.

- Constants/names serve to pick out particular people/things (Bertrand, Jean-Paul, Fido, Mount Everest, the martini glass on the table, a particular water atom, the number three, . . . , any individual thing).

- Predicates express properties and relations. Cf. the English
 - ‘. . . is blue’
 - ‘. . . is even’
 - ‘. . . loves . . . ’
 - ‘. . . is shorter than . . . ’
 - ‘. . . is between . . . and . . . ’
 - ‘. . . is to . . . as . . . is to . . . ’

Basic subject/predicate structure
Basic subject/predicate structure

Names, predicates – 2

- QL doesn’t need to segment propositional clauses any finer than name/predicate structure. So we’ll use the simplest possible expressions for names and predicates.
Basic subject/predicate structure

Names, predicates – 2

- QL doesn’t need to segment propositional clauses any finer than name/predicate structure. So we’ll use the simplest possible expressions for names and predicates.
- Constants/names: \(a, b, c, l, m, n, \ldots \)
Names, predicates – 2

▶ QL doesn’t need to segment propositional clauses any finer than name/predicate structure. So we’ll use the simplest possible expressions for names and predicates.

▶ Constants/names: \(a, b, c, l, m, n, \ldots \)

▶ Predicates:
Basic subject/predicate structure

Names, predicates – 2

- QL doesn’t need to segment propositional clauses any finer than name/predicate structure. So we’ll use the simplest possible expressions for names and predicates.
- Constants/names: \(a, b, c, l, m, n, \ldots \)
- Predicates:
 - monadic: \(F, G, H, \ldots \)
Basic subject/predicate structure

Names, predicates – 2

- QL doesn’t need to segment propositional clauses any finer than name/predicate structure. So we’ll use the simplest possible expressions for names and predicates.
- Constants/names: \(a, b, c, l, m, n, \ldots \).
- Predicates:
 - monadic: \(F, G, H, \ldots \)
 - dyadic: \(L, M, \ldots \)

NB: we shouldn’t really use open-ended lists, but we’ll be careless for the moment.

NB: QL predicates all have a fixed adicity (compare ordinary language multigrade predicates like ‘work well together’, ‘conspired to commit murder’).
Basic subject/predicate structure

Names, predicates – 2

- QL doesn’t need to segment propositional clauses any finer than name/predicate structure. So we’ll use the simplest possible expressions for names and predicates.
- Constants/names: \(a, b, c, l, m, n, \ldots \).
- Predicates:
 - monadic: \(F, G, H, \ldots \)
 - dyadic: \(L, M, \ldots \)
 - triadic: \(R, S, \ldots \)

NB: we shouldn’t really use open-ended lists, but we’ll be careless for the moment.

NB: QL predicates all have a fixed adicity (compare ordinary language multigrade predicates like ‘work well together’, ‘conspired to commit murder’).
Basic subject/predicate structure

Names, predicates – 2

- QL doesn’t need to segment propositional clauses any finer than name/predicate structure. So we’ll use the simplest possible expressions for names and predicates.
- Constants/names: \(a, b, c, l, m, n, \ldots\).
- Predicates:
 - monadic: \(F, G, H, \ldots\)
 - dyadic: \(L, M, \ldots\)
 - triadic: \(R, S, \ldots\)
 - (other polyadic predicates \(\ldots\))
Names, predicates – 2

QL doesn’t need to segment propositional clauses any finer than name/predicate structure. So we’ll use the simplest possible expressions for names and predicates.

- Constants/names: a, b, c, l, m, n, \ldots

- Predicates:
 - monadic: F, G, H, \ldots
 - dyadic: L, M, \ldots
 - triadic: R, S, \ldots
 - (other polyadic predicates ...)

- NB: we shouldn’t really use open-ended lists, but we’ll be careless for the moment.
Names, predicates – 2

QL doesn’t need to segment propositional clauses any finer than name/predicate structure. So we’ll use the simplest possible expressions for names and predicates.

- Constants/names: \(a, b, c, l, m, n, \ldots \)
- Predicates:
 - monadic: \(F, G, H, \ldots \)
 - dyadic: \(L, M, \ldots \)
 - triadic: \(R, S, \ldots \)
 - (other polyadic predicates ...)

NB: we shouldn’t really use open-ended lists, but we’ll be careless for the moment.

NB: QL predicates all have a fixed adicity (compare ordinary language multigrade predicates like ‘work well together’, ‘conspired to commit murder’).
Basic subject/predicate structure

Atomic sentences – 1

- The most simple kind of sentence in QL – the atomic sentences – are formed by taking an \(n \)-place predicate and following it by \(n \) names.
Atomic sentences – 1

- The most simple kind of sentence in QL – the atomic sentences – are formed by taking an n-place predicate and following it by n names.
- The order here – predicate followed by name(s) – is purely conventional but utterly standard.
Atomic sentences – 1

- The most simple kind of sentence in QL – the atomic sentences – are formed by taking an n-place predicate and following it by n names.
- The order here – \textit{predicate followed by name(s)} – is purely conventional but utterly standard.
- Suppose that a, b, c are names, F is a one-place predicate, L is two-place, R is three-place. Then the following are atomic sentences:
Atomic sentences – 1

- The most simple kind of sentence in QL – the atomic sentences – are formed by taking an \(n \)-place predicate and following it by \(n \) names.
- The order here – predicate followed by name(s) – is purely conventional but utterly standard.
- Suppose that \(a, b, c \) are names, \(F \) is a one-place predicate, \(L \) is two-place, \(R \) is three-place. Then the following are atomic sentences:
 - \(Fa, Fb \ldots \)
The most simple kind of sentence in QL – the atomic sentences – are formed by taking an n-place predicate and following it by n names.

The order here – predicate followed by name(s) – is purely conventional but utterly standard.

Suppose that a, b, c are names, F is a one-place predicate, L is two-place, R is three-place. Then the following are atomic sentences:

- $Fa, Fb \ldots$
- $Lab, Lba, Laa \ldots$
Basic subject/predicate structure

Atomic sentences – 1

- The most simple kind of sentence in QL – the atomic sentences – are formed by taking an \(n \)-place predicate and following it by \(n \) names.
- The order here – predicate followed by name(s) – is purely conventional but utterly standard.
- Suppose that \(a, b, c \) are names, \(F \) is a one-place predicate, \(L \) is two-place, \(R \) is three-place. Then the following are atomic sentences:
 - \(Fa, Fb \ldots \)
 - \(Lab, Lba, Laa \ldots \)
 - \(Rcab, Raaa, Rbab \ldots \)
Atomic sentences – 2

- The interpretation of an atomic sentence – a predicate followed by name(s) – is as you’d expect. The sentence says that the individuals named have the property/stand in the relation expressed by the predicate (order of names matters!).

 - Fa means Romeo is a boy
 - Lab means Romeo loves Juliet
 - Lba means Juliet loves Romeo
 - Rabc means Romeo prefers Juliet to Rosaline
 - Raba means Romeo prefers Juliet to himself

Suppose that:

- a names Romeo,
- b names Juliet,
- c names Rosaline.

F means x is a boy,
G means x is girl,
L means x loves y,
R means x prefers y to z.
Basic subject/predicate structure

Atomic sentences – 2

- The interpretation of an atomic sentence – a predicate followed by name(s) – is as you’d expect. The sentence says that the individuals named have the property/stand in the relation expressed by the predicate (order of names matters!).

- Suppose that:

 a names Romeo, b names Juliet, c names Rosaline.

 F means ① *is a boy*, G means ① *is girl*,

 L means ① *loves* ②, R means ① *prefers* ② *to* ③
Atomic sentences – 2

The interpretation of an atomic sentence – a predicate followed by name(s) – is as you’d expect. The sentence says that the individuals named have the property/stand in the relation expressed by the predicate (order of names matters!).

Suppose that:

- a names Romeo,
- b names Juliet,
- c names Rosaline.

F means ① is a boy,
G means ① is girl,
L means ① loves ②,
R means ① prefers ② to ③.

Then:
The interpretation of an atomic sentence – a predicate followed by name(s) – is as you’d expect. The sentence says that the individuals named have the property/stand in the relation expressed by the predicate (order of names matters!).

Suppose that:

- \(a \) names Romeo, \(b \) names Juliet, \(c \) names Rosaline.
- \(F \) means \(\text{\textit{is a boy}} \), \(G \) means \(\text{\textit{is girl}} \),
- \(L \) means \(\text{\textit{loves}} \), \(R \) means \(\text{\textit{prefers}} \) \(\text{\textit{to}} \)

Then:
- \(Fa \) means Romeo is a boy
Atomic sentences – 2

The interpretation of an atomic sentence – a predicate followed by name(s) – is as you’d expect. The sentence says that the individuals named have the property/stand in the relation expressed by the predicate (order of names matters!).

Suppose that:

- a names Romeo, b names Juliet, c names Rosaline.
- F means 1 is a boy, G means 1 is girl,
- L means 1 loves 2, R means 1 prefers 2 to 3

Then:

- Fa means Romeo is a boy
- Lab means Romeo loves Juliet
Atomic sentences – 2

- The interpretation of an atomic sentence – a predicate followed by name(s) – is as you’d expect. The sentence says that the individuals named have the property/stand in the relation expressed by the predicate (order of names matters!).

- Suppose that:

 a names Romeo, b names Juliet, c names Rosaline.
 \[F \text{ means } 1 \text{ is a boy, } G \text{ means } 1 \text{ is girl,} \]
 \[L \text{ means } 1 \text{ loves } 2, \ R \text{ means } 1 \text{ prefers } 2 \text{ to } 3 \]

- Then:
 - \(Fa \) means Romeo is a boy
 - \(Lab \) means Romeo loves Juliet
 - \(Lba \) means Juliet loves Romeo
The interpretation of an atomic sentence – a predicate followed by name(s) – is as you’d expect. The sentence says that the individuals named have the property/stand in the relation expressed by the predicate (order of names matters!).

Suppose that:

\[
\begin{align*}
a & \text{ names Romeo, } \ b & \text{ names Juliet, } \ c & \text{ names Rosaline.} \\
F & \text{ means } 1 \ \text{is a boy, } \ G & \text{ means } 1 \ \text{is girl,} \\
L & \text{ means } 1 \ \text{loves } 2, \ R & \text{ means } 1 \ \text{prefers } 2 \ \text{to } 3
\end{align*}
\]

Then:

- \(Fa \) means Romeo is a boy
- \(Lab \) means Romeo loves Juliet
- \(Lba \) means Juliet loves Romeo
- \(Rabc \) means Romeo prefers Juliet to Rosaline
Atomic sentences – 2

The interpretation of an atomic sentence – a predicate followed by name(s) – is as you’d expect. The sentence says that the individuals named have the property/stand in the relation expressed by the predicate (order of names matters!).

Suppose that:

\[
\begin{array}{l}
\text{a names Romeo, } b \text{ names Juliet, } c \text{ names Rosaline.} \\
F \text{ means } 1 \text{ is a boy, } G \text{ means } 1 \text{ is girl,} \\
L \text{ means } 1 \text{ loves } 2 , \ R \text{ means } 1 \text{ prefers } 2 \text{ to } 3
\end{array}
\]

Then:

- \(Fa \) means Romeo is a boy
- \(Lab \) means Romeo loves Juliet
- \(Lba \) means Juliet loves Romeo
- \(Rabc \) means Romeo prefers Juliet to Rosaline
- \(Raba \) means Romeo prefers Juliet to himself
Basic subject/predicate structure

Adding connectives – 1

\[a \text{ names Romeo, } b \text{ names Juliet, } c \text{ names Rosaline.} \]

\[F \text{ means } 1\text{ is a boy, } G \text{ means } 1\text{ is girl,} \]

\[L \text{ means } 1\text{ loves } 2\text{, } R \text{ means } 1\text{ prefers } 2\text{ to } 3\text{.} \]

We'll now add to QL the now-familiar truth-functional propositional connectives.

Then how would we translate the following?

- Juliet is not a boy
- Romeo loves Juliet and she loves him
- Juliet and Rosaline are both girls
- Romeo loves either Rosaline or Juliet
- If Romeo prefers himself to Juliet, then she doesn't love him.
Adding connectives – 1

- a names Romeo, b names Juliet, c names Rosaline.
- F means \Box is a boy, G means \Box is girl,
- L means \Box loves \Box, R means \Box prefers \Box to \Box

We’ll now add to QL the now-familiar truth-functional propositional connectives
Adding connectives – 1

- a names Romeo, b names Juliet, c names Rosaline.
 - F means 1 is a boy, G means 1 is girl,
 - L means 1 loves 2, R means 1 prefers 2 to 3

- We’ll now add to QL the now-familiar truth-functional propositional connectives
- Then how would we translate the following?
Adding connectives – 1

- a names Romeo, b names Juliet, c names Rosaline.

- F means $\mathbf{1}$ is a boy, G means $\mathbf{1}$ is girl,

- L means $\mathbf{1}$ loves $\mathbf{2}$, R means $\mathbf{1}$ prefers $\mathbf{2}$ to $\mathbf{3}$

We’ll now add to QL the now-familiar truth-functional propositional connectives

Then how would we translate the following?

- Juliet is not a boy
Adding connectives – 1

- a names Romeo, b names Juliet, c names Rosaline.
- F means 1 is a boy, G means 1 is girl,
- L means 1 loves 2, R means 1 prefers 2 to 3

- We’ll now add to QL the now-familiar truth-functional propositional connectives

- Then how would we translate the following?
 - Juliet is not a boy
 - Romeo loves Juliet and she loves him
Adding connectives – 1

a names Romeo, b names Juliet, c names Rosaline.

F means 1 is a boy, G means 1 is girl,
L means 1 loves 2, R means 1 prefers 2 to 3

We’ll now add to QL the now-familiar truth-functional propositional connectives

Then how would we translate the following?

- Juliet is not a boy
- Romeo loves Juliet and she loves him
- Juliet and Rosaline are both girls
a names Romeo, b names Juliet, c names Rosaline.

F means 1 is a boy, G means 1 is girl,
L means 1 loves 2, R means 1 prefers 2 to 3

We’ll now add to QL the now-familiar truth-functional propositional connectives

Then how would we translate the following?

- Juliet is not a boy
- Romeo loves Juliet and she loves him
- Juliet and Rosaline are both girls
- Romeo loves either Rosaline or Juliet
Basic subject/predicate structure

Adding connectives – 1

\[a \] names Romeo, \(b \) names Juliet, \(c \) names Rosaline.

\[F \] means 1 \textit{is a boy}, \(G \) means 1 \textit{is girl},
\[L \] means 1 \textit{loves} 2, \(R \) means 1 \textit{prefers} 2 \textit{to} 3

We’ll now add to QL the now-familiar truth-functional propositional connectives

Then how would we translate the following?

- Juliet is not a boy
- Romeo loves Juliet and she loves him
- Juliet and Rosaline are both girls
- Romeo loves either Rosaline or Juliet
- If Romeo prefers himself to Juliet, then she doesn’t love him.
a names Romeo, b names Juliet, c names Rosaline.

\[\begin{align*}
F \text{ means } & 1 \text{ is a boy}, \\
G \text{ means } & 1 \text{ is girl}, \\
L \text{ means } & 1 \text{ loves } 2, \\
R \text{ means } & 1 \text{ prefers } 2 \text{ to } 3
\end{align*}\]
Adding connectives – 2

- a names Romeo, b names Juliet, c names Rosaline.

 - F means a is a boy, G means a is girl,
 - L means a loves b, R means a prefers b to c

- Juliet is not a boy $\Rightarrow \neg Fb$
Adding connectives – 2

- a names Romeo, b names Juliet, c names Rosaline.
 - F means ① is a boy, G means ① is girl,
 - L means ① loves ②, R means ① prefers ② to ③

- Juliet is not a boy $\Rightarrow \neg Fb$
- Romeo loves Juliet and she loves him $\Rightarrow (Lab \land Lba)$
Basic subject/predicate structure

Adding connectives – 2

\[
\begin{align*}
a & \text{ names Romeo, } b & \text{ names Juliet, } c & \text{ names Rosaline.} \\
\quad F & \text{ means } 1 \text{ is a boy, } G & \text{ means } 1 \text{ is girl,} \\
\quad L & \text{ means } 1 \text{ loves } 2, \ R & \text{ means } 1 \text{ prefers } 2 \text{ to } 3
\end{align*}
\]

\[
\begin{align*}
\quad & \text{Juliet is not a boy } \Rightarrow \neg Fb \\
\quad & \text{Romeo loves Juliet and she loves him } \Rightarrow (Lab \land Lba) \\
\quad & \text{Juliet and Rosaline are both girls } \Rightarrow (Gb \land Gc) \\
\end{align*}
\]

NOT $G(b \land c)$
Adding connectives – 2

- a names Romeo, b names Juliet, c names Rosaline.
 - F means $\mathit{1}$ is a boy, G means $\mathit{1}$ is girl,
 - L means $\mathit{1}$ loves $\mathit{2}$, R means $\mathit{1}$ prefers $\mathit{2}$ to $\mathit{3}$

- Juliet is not a boy $\Rightarrow \neg Fb$
- Romeo loves Juliet and she loves him $\Rightarrow (Lab \land Lba)$
- Juliet and Rosaline are both girls $\Rightarrow (Gb \land Gc)$
 - NOT $G(b \land c)$
- Romeo loves either Rosaline or Juliet $\Rightarrow (Lab \lor Lac)$
 - NOT $La(b \lor c)$
Basic subject/predicate structure

Adding connectives – 2

- \(a \) names Romeo, \(b \) names Juliet, \(c \) names Rosaline.
 - \(F \) means \(1 \) is a boy, \(G \) means \(1 \) is girl,
 - \(L \) means \(1 \) loves \(2 \), \(R \) means \(1 \) prefers \(2 \) to \(3 \)

- Juliet is not a boy \(\Rightarrow \neg Fb \)
- Romeo loves Juliet and she loves him \(\Rightarrow (L_{ab} \land L_{ba}) \)
- Juliet and Rosaline are both girls \(\Rightarrow (G_{b} \land G_{c}) \)
 \(\neg G(b \land c) \)
- Romeo loves either Rosaline or Juliet \(\Rightarrow (L_{ab} \lor L_{ac}) \)
 \(\neg L_{a}(b \lor c) \)
- If Romeo prefers himself to Juliet, then she doesn’t love him
 \(\Rightarrow (Ra_{ab} \supset \neg L_{ba}) \)
How not to add quantifiers

- Our next task
- Basic subject/predicate structure
- How not to add quantifiers
How not to add quantifiers

Some vagaries of English quantification

▶ Compare

All students like logic
Every student likes logic
Any student likes logic
Each student likes logic

▶ These might seem equivalent, but they embed differently, e.g.

If all students like logic, I'll be surprised
If any student likes logic, I'll be surprised

▶ And compare

Not all students turned up to the class.
Not any students turned up to the class

▶ In QL we'll have just one style of universal quantifier.
How not to add quantifiers

Some vagaries of English quantification

Compare

- All students like logic
- Every student likes logic
- Any student likes logic
- Each student likes logic
Some vagaries of English quantification

- Compare

 All students like logic
 Every student likes logic
 Any student likes logic
 Each student likes logic

- These might seem equivalent, but they embed differently, e.g. compare

 If all students like logic, I'll be surprised
 If any student likes logic, I'll be surprised

In QL we'll have just one style of universal quantifier.
How not to add quantifiers

Some vagaries of English quantification

- Compare

 - All students like logic
 - Every student likes logic
 - Any student likes logic
 - Each student likes logic

- These might seem equivalent, but they embed differently, e.g.
 compare

 - If all students like logic, I’ll be surprised
 - If any student likes logic, I’ll be surprised
Some vagaries of English quantification

- Compare

\[
\begin{align*}
\text{All students like logic} \\
\text{Every student likes logic} \\
\text{Any student likes logic} \\
\text{Each student likes logic}
\end{align*}
\]

- These might seem equivalent, but they embed differently, e.g.
 compare

\[
\begin{align*}
\text{If all students like logic, I’ll be surprised} \\
\text{If any student likes logic, I’ll be surprised}
\end{align*}
\]

- And compare
Some vagaries of English quantification

- Compare

 All students like logic
 Every student likes logic
 Any student likes logic
 Each student likes logic

- These might seem equivalent, but they embed differently, e.g. compare

 If all students like logic, I’ll be surprised
 If any student likes logic, I’ll be surprised

- And compare

 Not all students turned up to the class.
 Not any students turned up to the class [?]
Some vagaries of English quantification

- Compare

 All students like logic
 Every student likes logic
 Any student likes logic
 Each student likes logic

- These might seem equivalent, but they embed differently, e.g. compare

 If all students like logic, I’ll be surprised
 If any student likes logic, I’ll be surprised

- And compare

 Not all students turned up to the class.
 Not any students turned up to the class [?]

- In QL we’ll have just one style of universal quantifier.
Quantifiers modelled on English?

- To a fair extent, “everyone” can grammatically appear in English sentences in slots where (personal) names can appear. Thus compare

Juliet loves Romeo / Everyone loves Romeo

If Juliet does, Romeo does / If everyone does, Romeo does

Juliet loves Romeo / Everyone loves everyone

(But cf. “Oh Juliet, my beloved...”: we can’t have “Oh everyone, my beloved”. Or cf. “Someone other than Juliet loves Romeo”: we can’t have “Someone other than everyone loves Romeo”.)

Can we dismiss exceptions as linguistic quirks?
How not to add quantifiers

Quantifiers modelled on English?

- To a fair extent, “everyone” can grammatically appear in English sentences in slots where (personal) names can appear. Thus compare
 - Juliet loves Romeo / Everyone loves Romeo

 (But cf. “Oh Juliet, my beloved...” we can’t have “Oh everyone, my beloved”. Or cf. “Someone other than Juliet loves Romeo”: we can’t have “Someone other than everyone loves Romeo”.)

Can we dismiss exceptions as linguistic quirks?
How not to add quantifiers

Quantifiers modelled on English?

- To a fair extent, “everyone” can grammatically appear in English sentences in slots where (personal) names can appear. Thus compare
- Juliet loves Romeo / Everyone loves Romeo
- If Juliet does, Romeo does / If everyone does, Romeo does

(But cf. “Oh Juliet, my beloved ...”: we can’t have “Oh everyone, my beloved”. Or cf. “Someone other than Juliet loves Romeo”: we can’t have “Someone other than everyone loves Romeo.”)
How not to add quantifiers

Quantifiers modelled on English?

- To a fair extent, “everyone” can grammatically appear in English sentences in slots where (personal) names can appear. Thus compare
 - Juliet loves Romeo / Everyone loves Romeo
 - If Juliet does, Romeo does / If everyone does, Romeo does
 - Juliet loves Romeo / Everyone loves everyone

(But cf. “Oh Juliet, my beloved...” we can’t have “Oh everyone, my beloved”. Or cf. “Someone other than Juliet loves Romeo”: we can’t have “Someone other than everyone loves Romeo”.)
How not to add quantifiers

Quantifiers modelled on English?

- To a fair extent, “everyone” can grammatically appear in English sentences in slots where (personal) names can appear. Thus compare
- Juliet loves Romeo / Everyone loves Romeo
- If Juliet does, Romeo does / If everyone does, Romeo does
- Juliet loves Romeo / Everyone loves everyone
- (But cf. “Oh Juliet, my beloved ...”: we can’t have “Oh everyone, my beloved”. Or cf. “Someone other than Juliet loves Romeo”: we can’t have “Someone other than everyone loves Romeo”.)
Quantifiers modelled on English?

- To a fair extent, “everyone” can grammatically appear in English sentences in slots where (personal) names can appear. Thus compare
- **Juliet** loves Romeo / **Everyone** loves Romeo
- If **Juliet** does, Romeo does / If **everyone** does, Romeo does
- **Juliet** loves **Romeo** / **Everyone** loves everyone
- (But cf. “Oh **Juliet**, my beloved ...”: we can’t have “Oh **everyone**, my beloved”. Or cf. “Someone other than **Juliet** loves Romeo”: we can’t have “Someone other than **everyone** loves Romeo”.)
- Can we dismiss exceptions as linguistic quirks?
Suppose we try to introduce a quantifier \mathcal{E} as QL’s way of talking about everyone with the following two rules that English seems (partially) to obey:
Suppose we try to introduce a quantifier \mathcal{E} as QL’s way of talking about everyone with the following two rules that English seems (partially) to obey:

1. **syntax**: if $\varphi(a)$ is grammatical, so is $\varphi(\mathcal{E})$. (So we get the syntactic interchangeability of name and quantifier which we often have in English.)
Suppose we try to introduce a quantifier \mathcal{E} as QL’s way of talking about everyone with the following two rules that English seems (partially) to obey:

1. syntax: if $\varphi(a)$ is grammatical, so is $\varphi(\mathcal{E})$. (So we get the syntactic interchangeability of name and quantifier which we often have in English.)
2. semantics: $\varphi(\mathcal{E})$ says of everyone what $\varphi(a)$ says of what a names.
How not to add quantifiers

Quantifiers modelled on English?

- Suppose we try to introduce a quantifier \mathcal{E} as QL’s way of talking about everyone with the following two rules that English seems (partially) to obey:
 1. syntax: if $\varphi(a)$ is grammatical, so is $\varphi(\mathcal{E})$. (So we get the syntactic interchangeability of name and quantifier which we often have in English.)
 2. semantics: $\varphi(\mathcal{E})$ says of everyone what $\varphi(a)$ says of what a names.

- Will this work?
Hopeless for logic! –1

▶ To repeat, the suggestion is:

1. syntax: if \(\phi(a) \) is grammatical, so is \(\phi(E) \).

2. semantics: \(\phi(E) \) says of everyone what \(\phi(n) \) says of what \(n \) names.

▶ Suppose again \(a \) names Romeo, \(b \) names Juliet, \(L \) means \(x \) loves \(y \),

▶ Then the syntactic rule makes e.g. \(\neg L_E b \) ambiguous in terms of its constructional history.

1. Do we first “quantify into” \(L_E b \) to get \(L_E b \), and then negate the result to get \(\neg L_E b \)?

2. Or do we first negate \(L_E b \) to get \(\neg L_E b \), and then “quantify in” to get \(\neg L_E b \)?

▶ And the semantic rule generates a corresponding semantic ambiguity.
Hopeless for logic! –1

To repeat, the suggestion is:

1. syntax: if \(\varphi(a) \) is grammatical, so is \(\varphi(\mathcal{E}) \).
How not to add quantifiers

Hopeless for logic! –1

To repeat, the suggestion is:

1. syntax: if $\varphi(a)$ is grammatical, so is $\varphi(\mathcal{E})$.
2. semantics: $\varphi(\mathcal{E})$ says of everyone what $\varphi(n)$ says of what n names.
How not to add quantifiers

Hopeless for logic! –1

To repeat, the suggestion is:

1. syntax: if \(\phi(a) \) is grammatical, so is \(\phi(E) \).
2. semantics: \(\phi(E) \) says of everyone what \(\phi(n) \) says of what \(n \) names.

Suppose again \(a \) names Romeo, \(b \) names Juliet, \(L \) means ① loves ②,
Hopeless for logic! –1

To repeat, the suggestion is:

1. syntax: if $\varphi(a)$ is grammatical, so is $\varphi(\mathcal{E})$.
2. semantics: $\varphi(\mathcal{E})$ says of everyone what $\varphi(n)$ says of what n names.

Suppose again a names Romeo, b names Juliet, L means 1 \textit{loves} 2,

Then the syntactic rule makes e.g. $\neg L\mathcal{E} b$ ambiguous in terms of its constructional history.
Hopeless for logic! –1

To repeat, the suggestion is:

1. syntax: if $\varphi(a)$ is grammatical, so is $\varphi(E)$.
2. semantics: $\varphi(E)$ says of everyone what $\varphi(n)$ says of what n names.

Suppose again a names Romeo, b names Juliet, L means ① *loves* ②,

Then the syntactic rule makes e.g. $\neg L E b$ ambiguous in terms of its constructional history.

1. Do we first “quantify into” $L a b$ to get $L E b$, and then negate the result to get $\neg L E b$?
How not to add quantifiers

Hopeless for logic! –1

To repeat, the suggestion is:

1. syntax: if \(\varphi(a) \) is grammatical, so is \(\varphi(\mathcal{E}) \).
2. semantics: \(\varphi(\mathcal{E}) \) says of everyone what \(\varphi(n) \) says of what \(n \) names.

Suppose again \(a \) names Romeo, \(b \) names Juliet, \(L \) means \(1 \) loves \(2 \),

Then the syntactic rule makes e.g. \(\neg L \mathcal{E} b \) ambiguous in terms of its constructional history.

1. Do we first “quantify into” \(Lab \) to get \(L \mathcal{E} b \), and then negate the result to get \(\neg L \mathcal{E} b \)?
2. Or do we first negate \(Lab \) to get \(\neg Lab \), and then “quantify in” to get \(\neg L \mathcal{E} b \)?
How not to add quantifiers

Hopeless for logic! –1

- To repeat, the suggestion is:
 1. syntax: if $\varphi(a)$ is grammatical, so is $\varphi(\mathcal{E})$.
 2. semantics: $\varphi(\mathcal{E})$ says of everyone what $\varphi(n)$ says of what n names.

- Suppose again a names Romeo, b names Juliet, L means 1 loves 2,

- Then the syntactic rule makes e.g. $\neg L\mathcal{E}b$ ambiguous in terms of its constructional history.
 1. Do we first "quantify into" Lab to get $L\mathcal{E}b$, and then negate the result to get $\neg L\mathcal{E}b$?
 2. Or do we first negate Lab to get $\neg Lab$, and then "quantify in" to get $\neg L\mathcal{E}b$?

- And the semantic rule generates a corresponding semantic ambiguity.
How not to add quantifiers

Hopeless for logic! –2

- *a* names Romeo, *b* names Juliet, *L* means ① *loves* ②,

\[
\text{semantics: } \varphi(E) \text{ says of everyone what } \varphi(n) \text{ says of what } n \text{ names.}
\]

So, "quantifying into" *Lab* to get *LEb* gives us a proposition which means everyone loves Juliet. Negating that to get \(\neg \text{LEb}\) gives us a proposition which means that not everyone loves Juliet.

- But negating *Lab* to get \(\neg \text{Lab}\) gives us a proposition which says Romeo doesn't love Juliet. And then our semantic rule tells us that \(\neg \text{LEb}\) says of everyone what \(\neg \text{Lab}\) says of what *a* names. So \(\neg \text{LEb}\) says of everyone that he/she doesn't love Juliet – i.e. no-one loves Juliet.

- So our suggested device for quantifying introduces an ambiguity into the language, exactly what we don't want in a formalized language.
How not to add quantifiers

Hopeless for logic! –2

- a names Romeo, b names Juliet, L means ① loves ②,
- semantics: $\varphi(E)$ says of everyone what $\varphi(n)$ says of what n names.

So our suggested device for quantifying introduces an ambiguity into the language, exactly what we don't want in a formalized language.
How not to add quantifiers

Hopeless for logic! –2

- a names Romeo, b names Juliet, L means $\mathbf{1}$ loves $\mathbf{2}$,
- semantics: $\varphi(E)$ says of everyone what $\varphi(n)$ says of what n names.
- So, “quantifying into” Lab to get $L\mathcal{E}b$ gives us a proposition which means everyone loves Juliet. Negating that to get $\neg L\mathcal{E}b$ gives us a proposition which means that not everyone loves Juliet.
Hopeless for logic! –2

- a names Romeo, b names Juliet, L means ① loves ②,
- semantics: $\varphi(\mathcal{E})$ says of everyone what $\varphi(n)$ says of what n names.
- So, “quantifying into” Lab to get $L\mathcal{E}b$ gives us a proposition which means everyone loves Juliet. Negating that to get $\neg L\mathcal{E}b$ gives us a proposition which means that not everyone loves Juliet.
- But negating Lab to get $\neg Lab$ gives us a proposition which says Romeo doesn’t love Juliet. And then our semantic rule tells us that $\neg L\mathcal{E}b$ says of everyone what $\neg Lab$ says of what a names. So $\neg L\mathcal{E}b$ says of everyone that he/she doesn’t love Juliet – i.e. no-one loves Juliet.
Hopeless for logic! –2

- a names Romeo, b names Juliet, L means 1 loves 2,
- semantics: $\varphi(E)$ says of everyone what $\varphi(n)$ says of what n names.
- So, “quantifying into” Lab to get LEb gives us a proposition which means everyone loves Juliet. Negating that to get $\neg LEb$ gives us a proposition which means that not everyone loves Juliet.
- But negating Lab to get $\neg Lab$ gives us a proposition which says Romeo doesn’t love Juliet. And then our semantic rule tells us that $\neg LEb$ says of everyone what $\neg Lab$ says of what a names. So $\neg LEb$ says of everyone that he/she doesn’t love Juliet – i.e. no-one loves Juliet.
- So our suggested device for quantifying introduces an ambiguity into the language, exactly what we don’t want in a formalized language.
How not to add quantifiers

Similar ambiguities in English

Consider how **scope ambiguities** can arise when a quantifier is similarly combined with negation in English. E.g.

- Conversation 1:
 - 'Everyone seems to be here, so we can begin.'
 - 'No! Hold on. Everyone has not yet arrived. Jack is missing.'

- Conversation 2:
 - 'If anyone arrives early, the surprise will be spoilt.'
 - 'Don't worry! It's still dead quiet outside. Everyone has not yet arrived.'
Similar ambiguities in English

- Consider how **scope ambiguities** can arise when a quantifier is similarly combined with negation in English. E.g.

 \[\text{Everyone has not yet arrived.} \]
Similar ambiguities in English

- Consider how **scope ambiguities** can arise when a quantifier is similarly combined with negation in English. E.g.

 Everyone has not yet arrived.

- Conversation 1:
Similar ambiguities in English

Consider how scope ambiguities can arise when a quantifier is similarly combined with negation in English. E.g.

Everyone has not yet arrived.

Conversation 1:

‘*Everyone seems to be here, so we can begin.*’

— ‘*No! Hold on. Everyone has not yet arrived. Jack is missing.*’
How not to add quantifiers

Similar ambiguities in English

Consider how scope ambiguities can arise when a quantifier is similarly combined with negation in English. E.g.

Everyone has not yet arrived.

Conversation 1:

‘Everyone seems to be here, so we can begin.’
— ‘No! Hold on. Everyone has not yet arrived. Jack is missing.’

Conversation 2:
How not to add quantifiers

Similar ambiguities in English

Consider how **scope ambiguities** can arise when a quantifier is similarly combined with negation in English. E.g.

Everyone has not yet arrived.

Conversation 1:

‘Everyone seems to be here, so we can begin.’
— ‘No! Hold on. Everyone has not yet arrived. Jack is missing.’

Conversation 2:

‘If anyone arrives early, the surprise will be spoilt.’
— ‘Don’t worry! It’s still dead quiet outside. Everyone has not yet arrived.’