It isn’t all High Culture chez Logic Matters. Oh no. Perish the thought. For a start, from September to December we are devotees of Strictly.

That’s Strictly Come Dancing (the original, BBC, version of Dancing with the Stars, Ballando con Le Stelle, and over forty other versions). So it is all glamour and glitter, sequins and sexy outfits, fake tans and gallons of hair products, tears and tantrums. And that’s just the guys.

Each season we start watching with the same amused detachment. We tell ourselves that this year we won’t get hooked, this year the quarter-celebrities (most of whom we’ve never heard of) are an uninteresting/unattractive bunch, this year the silliness of the whole palaver is just too much …

And yet …

Like millions others, we find ourselves tuning in every Saturday. And as the no-hopers and the joke participants are voted off the show, we get more enthused. We start watching It Takes Two — the admirably warm and amusing weekday programmes interviewing participants, explaining the finer points of choreography, and generally having fun. Which can reveal that an impossibly glamorous pro dancer has a very sharp self-deprecating wit and is endearingly happy to send herself up, while a seemingly equally glamorous member of a boy band is self-doubting and charming. And that this soap actor is as two-dimensional as his character, but that that footballer’s wife is plainly a sweet girl who is delightfully surprised to find that she can dance. You get engaged with the contestants (and indeed with some of the pro dancers), with the ‘journeys’, with the increasingly terrific dances. Fellow devotees will know how it goes …

… And if you don’t, well, here for your holiday delight is the very final dance of the series. Down to the last three couples, the final contestants can choose their favourite dance to perform again. Here Simon Webbe and Kristina Rihanoff reprise their Argentine tango. They didn’t win Strictly 2014. But this was the dance of the series, from a man who three months before seemingly had two left feet and zero confidence. Who has come so far. And the result is really rather moving … Enjoy!

So, over the last months, quite a few more large boxes of books have gone to Oxfam. I have kept almost all my logic books. But in three years I must have given away some three quarters of my philosophy books. Very largely unmissed, if I am honest. Those works of the Great Dead Philosophers are no longer reproachfully waiting to be properly read. The more ephemeral books of the last forty years (witnessing passing fashions and fads) are largely disposed of. I’m never going to get excited again e.g. about general epistemology (too arid) or about foundations of physics (too hard), so all those texts can go too. I’m left with Frege, Russell, Wittgenstein, Quine; an amount of philosophical logic and philosophy of maths and related things; and an eclectic mix of unneeded books that somehow I just couldn’t quite bring myself to get rid of (yet). I’m not sure why among the philosophical remnants, Feyerabend for example stays and Fodor goes when I’ll never read either seriously again: but such are the vagaries of sentimental attachment.

But if I’m still rather attached to some authors and topics and themes and approaches, I’m not quite so sure about ‘philosophy’, the institution. Still, that’s another story. And anyway, those lucky enough to have philosophy jobs in these hard times certainly don’t need ancients grouching from the comfort of retirement: they have problems enough. True, judging from what’s been churning around on various Well Known Blogs over the last year, some might perhaps do well to recall Philip Roth’s wise words about that “treacherous … pleasure: the ecstasy of sanctimony”. But being the season of goodwill, I’ll say no more!

Instead, for your end-of-year delight, here’s an updated version of the Notes on Category Theory (still very partial though now 74 pp.). Newly added: a section on comma categories to Ch.4, a short chapter between the old Chs 7 and 8, and a chapter on representable functors. So far, then, I cover

Categories defined

Duality, kinds of arrows (epics, monics, isomorphisms …)

Functors

More about functors and categories (and the category of categories!)

Natural transformations (with rather more than usual on the motivation)

Equivalence of categories (again with a section on motivation, why we want ‘equivalence’ rather than full isomorphism)

The Yoneda embedding (shown to indeed be an embedding by using an easy restricted version of the Yoneda Lemma)

An aside on Cayley’s Theorem

The Yoneda Lemma (how to get to the full-dress version by two conceptually easy steps from the restricted version).

Representables (definitions, examples, universal elements, the category of elements).

After a bit of a gap, I’ve been able to get back to writing up my notes. The current instalment of the notes (61 pp.) corrects some typos in the first six chapters — and it is those needed corrections that prompt me quickly to post another version even though I’ve only added two new chapters this time. So far, then, I cover

Categories defined

Duality, kinds of arrows (epics, monics, isomorphisms …)

Functors

More about functors and categories (and the category of categories!)

Natural transformations (with rather more than usual on the motivation)

Equivalence of categories (again with a section on motivation, why we want ‘equivalence’ rather than full isomorphism)

The Yoneda embedding (shown to indeed be an embedding by using an easy restricted version of the Yoneda Lemma)

The Yoneda Lemma (how to get to the full-dress version by two conceptually easy steps from the restricted version).

It took me a while to see how best(?) to split the proof of the Yoneda Lemma into obviously well-motivated chunks: maybe some others new(ish) to category theory will find the treatment in Chs 7 and 8 helpful.

It is the time of year when the more serious newspapers invite panels of authors, reviews editors, and others to pick out their books of the year, leaving the rest of us to feel hopelessly out of touch and wondering how to find the time to read more … (Only a few months late, I did greatly enjoy and admire one of last year’s oft-chosen books, Donna Tartt’s The Goldfinch. I try to alternative reading novels old(ish) and new(ish), and the returned-to-modern-classic that I got lost in, and wished hadn’t come to an end, even though it is one of the longest single novels in the language, was Vikram Seth’s A Suitable Boy.)

But what about the logic books of 2014 (mathematical or philosophical)?

My patience with philosophy seems frankly to be getting less and less. I was disappointed by Stewart Shapiro’s Varieties of Logic, and haven’t yet read Penelope Maddy’s new The Logical Must. I’m sure Roy Cook’s The Yablo Paradox is a good thing, but again I haven’t mustered the enthusiasm to tackle that. But what else broadly in the area of philosophy-of-logic/philosophy-of-maths has newly appeared this year? I’m probably being forgetful, but as I look along my shelves I can’t recall anything that got me excited!

As for more technical stuff, however, I can be much more positive. The stand-out book for me is

Tom Leinster, Basic Category Theory (CUP, viii + 183 pp.).

To be sure, this is not for everyone who visits Logic Matters, for it is a mathematics text (published in the Cambridge Studies in Advanced Mathematics series), and also it won’t tell you about the more specifically logic-related topics in category theory. But the book’s treatment of the basic topics that it does cover strikes me as a particularly fine expository achievement, balancing economy of scale with accessibility. So that‘s my logic book of the year for 2014.

What are your logic/phil maths book highlights of the year?

As I said in my last post, I’ve been following some lectures on category theory since the beginning of term. The only way of really nailing this stuff down is to write yourself some notes, work through the proofs, etc. Which I’ve been doing. And then I’ve done some polishing to make the notes shareable with others following the course:

Warning: the course I’m following is for the Part III Maths Tripos (i.e. a pretty unrelenting graduate level course for mathematicians with a very strong background). My notes are easier going because I proceed quite slowly and pause to fill in all the proofs where the blackboard notes might well simply read “Exercise!”. But still, this is maths which requires some background to follow (even if perhaps less than you might think).

To be sure, I want to be thinking more in due course about some of the philosophical/foundational issues that category theory suggests: but for the moment my aim is to really get my head round the basic maths more than I’ve done in the past. Hence the notes, which maybe some others might find useful. So far, I cover

Categories defined

Duality, kinds of arrows (epics, monics, isomorphisms …)

Functors

More about functors and categories (and the category of categories!)

Natural transformations (with more than usual on the motivation)

Equivalence of categories (again with a section on the motivation)

Enjoy! (And even better, let me know where I’ve gone wrong and what I can improve.)

Once upon a lifetime ago, I took Part III of the Maths Tripos.

In fact, rather alarmingly, I started exactly fifty years ago this term. And it was tough. You had to aim to do over the year (the equivalent of) six courses of 24 lectures, which were lectured at a helter-skelter, take-no-prisoners, pace. The blackboard notes gave you just the barest skeleton, and you had to spend a great deal of time working on them between classes in order to keep up, and then a lot more time in the vacations to really get on top of the material. I remember it as the time in my life I had to work by far the hardest, though it all worked out well.

Things, it seems, have changed astonishingly little. I’ve been turning out — Mondays, Wednesdays and Fridays at 9! — to go to this year’s Part III Category Theory lectures (given by Rory Lucyshyn-Wright. The course is still lectured at a cracking pace, with blackboard notes giving you a bare skeleton, and leaving a great deal of work required if you are to put enough flesh onto the bones to get the real shape of what’s going on. No pre-digested handouts here!

I’m just about hanging on in there. I’m trying to write up quite detailed notes to fix ideas, and I’m already falling behind with those — and this despite the fact that I’ve read around a bit the subject in the past. But, as we all know, in maths in particular there is all the difference between a casual read and really working your way into a topic. And that’s what I want to try to do, at least for the beginnings of category theory. (Well, why not?)

OK, I’m no doubt slower on the uptake than I was back in the day, and the kids around me are among the world’s best mathematicians of their age, have a lot more energy and function more hours in the day. But they are having to keep up with three times as much this term, and will do it all again next term. We can only be impressed.

We’ve just made our first visit to a concert at Saffron Hall, less than forty minutes from Cambridge. This is a multi-purpose hall newly built as part of Saffron Walden County High School and opened at the very end of last year. Once upon a long time ago, Mrs Logic Matters was at school there, and as we ordered interval drinks at the bar, she found herself standing again outside the head’s office, remembering being torn off a strip inside (mascara, too much; skirt, too short …).

But I digress. The Hall itself is large and the stage huge, as you can see, so the four music stands for the string quartet (and raised seat for the cellist) looked very lost and lonely on the bare expanse. I worried that this space wasn’t going to work for such a small ensemble. Quite wrongly. The hall dimmed to leave the performers in a central pool of light. The acoustics were simply wonderful (apparently, there are state-of-the-art adjustable acoustics). The sight lines were perfect. The general ambience was very engaging, with particularly friendly front-of-house volunteers. There’s even a lot of parking. We were very impressed indeed with the Hall.

And the Brodskys? They began with Stravinsky’s short Three Pieces for String Quartet, new to me, and then gave a magical account of the fifth Shostakovich Quartet before the interval. Haunting and sensitively done. Bowled over. After the interval, however, the quartet played Death and the Maiden, and — by contrast — neither of us particularly warmed to their performance. (I had my doubts about the suitability of first violin’s playing style, and there wasn’t enough youthful fierceness either in the opening movement or the closing dance of death.) Still, the Shostakovich alone was more than worth the journey.

The main reason for posting this, however, is very warmly to encourage anyone within striking distance of Saffron Walden to check out the Hall’s programme of concerts over the next few months: Maria Joao Pires, The Sixteen, Ian Bostridge, Paul Lewis … in a number of cases repeating a programme from the Wigmore Hall a few days before or after. A rather astonishing line up. The efforts of the new Director in her first season are more than worth supporting.

“This book is based on two premises: one cannot understand philosophy of mathematics without understanding mathematics and one cannot understand mathematics without doing mathematics.” Thus the blurb of Stephen Pollard’s recent book A Mathematical Prelude to the Philosophy of Mathematics (Springer, 2014: xi + 202pp).

I certainly agree that if you want to study the philosophy of X, then it is good idea to know something about X! And that applies in particular when X = science or X = mathematics. It is hard work teaching philosophy of science to students whose ignorance of science is profound. Philosophers of maths can have things a bit easier. For in fact many serious philosophy departments do actually teach some relevant maths in-house, in the guise of mathematical logic courses. Students can encounter core first-order logic up to a smidgin of model theory, variations/extensions such as intuitionistic logic and second-order logic, something about theories of arithmetic, ideas about computable functions, and bit of set theory. True, these topics won’t necessarily be taught in the style of a hard-core maths course: the emphasis might be more on the Big Ideas and on conceptual foundations rather than on rather tricky problem-solving. But still, philosophy students who do tangle with the traditional menu of mathematical logic topics should acquire enough first-hand knowledge of enough serious mathematics for their philosophy of maths course to have something to work on.

Of course, if elementary mathematical logic is all the maths you ever get to know, you’ll end up with a rather skewed view of the mathematical enterprise. But at least you’ve made a start. It is then a nice question what other maths it would be good for a budding philosopher of maths to acquire some small acquaintance with. Now, Pollard’s title, and then his talk in the Preface of the book’s “motley” character, might perhaps suggest for a moment that we are going to get an interestingly varied menu of topics, including some out of the usual run. But this isn’t really how things go. We in fact get three chapters on set theory, preceded by two chapters on arithmetic, and succeeded by another chapter on arithmetic and a chapter on intuitionistic logic. So in fact it is business pretty much as usual — mostly covering, though briefly, the sort of topics mathematical logicians typically cover for their philosophy students — albeit with some twists in the treatment of arithmetic which we’ll come to in a moment.

How then does this compare with other accounts of the familiar topics? Starting with the set theory chapters, Pollard fusses a lot at the outset, stressing that we shouldn’t be misled by unhappy metaphors of the “sets are like boxes …” variety, and recommending that we think of them as more like unordered list-types. And then he runs and runs with this idea, talking about “Zermelian lists” and more before reverting to standard set talk. But I didn’t find this particularly well done. And I frankly don’t think this, as an expository ploy, would be likely to work any better as an introduction to set theory than the standard approach of e.g. those wonderfully lucid entry-level books on set theory that I recommended in the TYL Guide.

The preceding chapter on first-order Peano Arithmetic is more conventional, but also rather compressed, and again there are significantly better options out there.

So that leaves three chapters to say just a little more about. The first chapter of the book is indeed unusual, for it starts by discussing Hilbert’s stroke arithmetic, so we get a discussion of tokens and types of tally marks, and operations on them, and then aims to develop primitive recursive arithmetic on this basis. The metaphysics of types here seems to get rather murky (types can be uninstantiated on p. 6, so they seem to be platonic universals at that point, but on p.7 it seems they are worldly enough for their existence to vary between worlds, so maybe not so platonic after all; and things aren’t really sorted out in Sec. 1.9 “Some Philosophy” ). Maybe we can work at extracting a clear position, but is this what we want to be doing at this early point in what is supposed to be a maths book? And indeed the ensuing development of PRA really could be clearer too. So I’m not sure I’d want to recommend this chapter either.

But Pollard in his Preface does invite readers to pick and choose. And I so choose the last two chapters! The first of these takes us back to arithmetic after the excursus on set theory, but now to Frege Arithmetic. Students encountering the (neo)logicist programme in their philosophy of maths course could well find this presentation quite useful, as a companion piece to set alongside the Stanford Encyclopedia article. (I should note that, as in other chapters in the book, there are lots of comprehension-testing exercises as you go along, which some will find helpful.)

Then the final chapter goes off somewhat at a tangent, presenting a certain approach to intuitionist logic. This approach has its roots in the work of Gentzen, Prawitz, Dummett and Tennant, aiming to show that there is a particular naturalness to intuitionist logic if we think of the meaning of logical operators as given by their introduction rules, with elimination rules required to be harmonious (with this idea developed against the background of a certain way of thinking about negation and absurdity). But the particular version of these ideas we get here is due to Jaroslav Peregrin, in his ‘What is the Logic of Inference?’ Studia Logica 88 (2008) 263-294. This review isn’t the place to argue whether or not Peregrin’s is the best version of that general line of argument for the special naturalness of intuitionist logic. But Pollard’s exposition is done with verve, and a student ought to find it intriguing and thought-provoking. So this is the best and most novel chapter in a rather patchy book, I think.

Brian Weatherson has an interesting new blogroll of “active philosophy blogs” with “substantive” content [update: where Logic Matters now gets a mention!]. Inspired by that, I thought it was more than time to update the blogroll here. So alongside are now two short blogrolls to be going on with — scroll down the sidebar. One lists a few blogs with (occasional) logic/phil. maths/foundations of maths/or just maths content, the other links to a few other random favourites. (Hover your cursor over the blog title for a mini-description.)

The first list of logicky blogs is surprisingly short [Added: still short after an update, though I am being a bit selective]. Which probably simply reflects that I haven’t looked hard enough. So, folks, what am I missing? Any recommendations for (still active) blogs with good logic-related content??

Though actually, now I think about it, even Weatherson’s wide-ranging philosophy list is quite short, given the number of enthusiastic, energetic, philosophers out there. Perhaps the cool kids have moved on and blogs are no longer the done thing. A pity if so. They can be fun and illuminating for readers, and writers do get some ideas out there into the wider world (even a modest effort like Logic Matters counts its visitors per day in the many hundreds on the least generous of the stats counters).

[Added: with many thanks to @logicians on twitter, I’ve added a few more links, some I’d forgotten about, and one new to me.]