Kurt Gödel: Results on Foundations

If you have access to a library which subscribes to Springer Link, you should be able to download an e-copy of this very recent addition to the growing list of editions of Gödel’s various notebooks. (If you don’t have good library access, then tough — Springer are price-gouging at £111.50 for the PDF, and more for the print-on-demand version.)

The editors Maria Hämeen-Anttila and Jan von Plato write in their short Preface

If there is one “must” to be cleared in the enormous mass of the Kurt Gödel Papers kept at the Firestone Library of Princeton University, it is the series of four notebooks titled Resultate Grundlagen. Gödel wrote these 368 pages between 1940 and 1942, except for the first 33 and last 12 pages. There is a continuous page numbering and the same goes for the theorems. It has been a great fortune for us to meet the task of transcribing, translating, and editing these notebooks.

And later, in their introductory essay

Resultate Grundlagen [RG] is a collection of results Gödel considered finished. … Close to two thirds of RG deal with set theory … Next to set theory, RG contains results on arithmetic and recursive functions. Type theory is one clearly separate topic, and so is what Gödel called “positive logic.” The latter relates to intuitionism which was one of Gödel’s permanent interests from the early 1930s on. This interest is clearly seen in [RG] with about one part in four devoted to intuitionistic logic and its interpretation.

So that tells us two things. First, about the topics of the RG notebooks themselves. And second, inadvertently, that the language of this edition is sometimes only an approximation to good English. Evidently, Springer’s contribution to the publishing of this book didn’t run to a native-speaker copy-editor. This matters, I think, for two reasons. First, readers for whom English is not their first language will stumble. Second, the editors have (oddly to my mind) not given their transcription of Gödel’s obsolete German shorthand in a parallel text (surely an achievement worth preserving for future researchers): so occasionally the reader might wonder whether seemingly odd or stuttering phrasing is in the original or is a result of rendering into clumsy English. In fact the editors write

RG is a polished shorthand text when compared with such sources of preliminary work as [other notebooks]. There are next to no cancellations, but there are additions that often result in awkward sentence structures. The question is to what extent such passages should get improved in translation.

Given this sort of issue, why indeed not pre-empt a reader’s questions with a parallel text, as in the canonical edition of the Works?

On the key set-theoretic content, the editors write

After the transcription and translation work was done, we were lucky to find in Akihiro Kanamori a reader without comparison of Gödel’s results on foundations. … Aki took up the task and presented us with a splendid essay on The remarkable set theory in Gödel’s 1940–42 Resultate Grundlagen, an essay that explains how Gödel had arrived at numerous results independently discovered by others later, sometimes much later, in an anticipation of the development of set theory from 1942 on, the year Gödel left formal work in logic and foundations.

Which is good to know; but since Kanamori’s essay isn’t included in the book as an introduction (and isn’t yet available elsewhere), the rest of us will have to wait a little for a knowledgeable guide to Gödel’s achievement in RG. All that said, it remains astonishing to find how productive Gödel was in those years when he was publishing so little. Fascinating but frustrating to dip into.

3 thoughts on “Kurt Gödel: Results on Foundations”

    1. The last-but-one update of the plug-in that enabled edits up to 15 mins caused behind-the-scenes errors. So I removed it. The author has updated again, and the bug seems to have gone, so editing posts is now possible again!

Leave a Comment

Your email address will not be published. Required fields are marked *

Scroll to Top