## An Introduction to Proof Theory, Ch. 7 and Ch. 9

The overall strategy of Gentzen’s consistency proof for PA can be readily described. We map proofs in his sequent calculus version of PA to ordinals less than 𝜀_{0}. We show that there’s an effective reduction procedure which takes any proof in the system which ends with absurdity/the empty sequent and outputs another proof with the same conclusion but a smaller assigned ordinal. So if there is one proof of absurdity in PA, there is an infinite chain of such proofs indexed by an infinite descending chain of ordinals. That’s impossible, so we are done.

The devil is in all the details. And these will depend, of course, on the exact system of PA which we work with. If we do indeed start from something close to Gentzen’s own system, then things quickly get obscurely intricate in a very untransparent way. The assignment of ordinals initially seems pretty ad hoc and the reduction procedure horribly messy. It is the presence of PA’s induction rule which causes much of the trouble. So as Michael Rathjen suggests in his entry on Proof Theory in the *Stanford Encyclopedia*, it turns out to be notably more elegant to introduce an infinitary version of PA with the omega-rule replacing the induction rule, and then proceed in two stages. First show that we can unfold any PA deduction into a PA𝜔 deduction, and then do a significantly neater Gentzen-style consistency proof for PA𝜔 (the general idea was worked out by Schütte, and is familiar to old hands from the tantalizing fourteen-page Appendix in the first edition of Mendelson’s classic book!).

Mancosu, Galvan and Zach, however, stay old-school, giving us something close to Gentzen’s own proof. Even with various tweaks to smooth over some bumps, after an initial dozen pages saying a bit more about PA, this takes them *sixty-five* pages. And yes, these pages are spent relentlessly working though all the details for the specific chosen version of PA, with extended illustrations of various reduction steps. It is not that the discussion is padded out by e.g. a philosophical discussion about the warrant for accepting the required amount of ordinal induction; nor are there discussions of variant Gentzen-style proofs like Schütte‘s. Is the resulting hard slog worth it?

A mixed verdict (and I’ll be brief too, despite the length of these chapters — as I don’t think there is much profit in trying to summarise here e.g. the stages of the reduction procedure, or in looking at particular points of exposition). There’s something positive to say in a moment. But first the more critical comment.

It sounds so very *very* ungrateful, I know, but I didn’t find the level of exposition here that brilliant. The signposting along the way could be more brightly lit (long sections aren’t subdivided, and [mixing my metaphors!] crucial paragraphs can appear without fanfare — see e.g. half way down p. 280). And more importantly, page by page, the exposition could often be at least a couple of degrees more perspicuous. It is not that the proof details here are particularly *difficult*; but still, and really rather too often, I found myself having to re-read or backtrack, or having to work out the motivation for a technical detail for myself. I predict, then, that many of *IPT’*s *intended* readers (who may, recall, “have only a minimal background in mathematics and logic”) will find this less than maximally clear, and — to say the least — markedly tougher going than the authors wanted. The logically naive reader will struggle, surely.

But now forget about *IPT*’s official mission-statement! On the bright side, the more sophisticated reader — someone with enough mathematical nous to read these chapters pausing over the key ideas and explanations while initially skipping/skimming over much of the detail (and having a feel for which is likely to be which!) — should actually end up with a very good understanding of the general structure of Gentzen’s proof and what it is going to take to elaborate it. Such a reader should find that — judiciously approached — *IPT* provides a more attractive introduction than e.g. Takeuti’s classic text. So that’s terrific! But as I say, I think this probably requires a reader *not* to do the hard end-to-end slog, but to be mathematically able and confident enough to first skim through to get the headline ideas, and then do a second pass to get more feel for the shape of some of the details; the reader can then drill down further to work through as much of the remaining nitty-gritty that they then feel that they really want/need (though for many, that is probably not much!). For this more sophisticated reader, prepared to mine *IPT* for what they need in an intelligent way, these chapters on Gentzen’s consistency proof will indeed be a great resource.

And on that happier note, let me end!