Logical Methods — on modal logic
Moving on through Greg Restall and Shawn Sandefer’s Logical Methods, Part II is on propositional modal logic. So the reader gets to find out e.g. about S4 vs S5 and even hears about actuality operators etc. before ever meeting a quantifier. Not an ordering that many teachers of logic will want to be following. But then, as I have already indicated when discussing Part I on propositional logic, I’m not sure this is really working as the first introduction to logic that it is proclaimed to be (“requires no background in logic”). I won’t bang on about that again. So let’s take Part II as a more or less stand-alone treatment that could perhaps be used for a module on modal logic for philosophers, for those who have already done enough logic. What does it cover? How well does it work?
Part I, recall, takes a proof-theory-first approach; Part II sensibly reverses the order of business. So Chapter 7 on ‘Necessity and Possibility’ is a speedy tour of the Kripke semantics of S5, then S4, then intuitionistic logic. I can’t to be honest say that the initial presentation of S5 semantics is super-clearly done, and the ensuing description of what are in effect unsigned tableaux for systematically searching for counterexamples to S5 validity surely is too brisk (read Graham Priest’s wonderful text on non-classical logics instead). And jumping to the other end of the chapter, there is a significant leap in difficulty (albeit accompanied by a “warning”) when giving proofs of the soundness and completeness of initutionistic logic with respect to Kripke semantics. Rather too much is packed in here to work well, I suspect.
Chapter 8 is a shorter chapter on ‘Actuality and 2D Logic’. Interesting, though again speedy. But for me, the issue arises of whether — if I were giving a course on modal logic for philosophers — I’d want to spend any time on these topics as opposed to touching on the surely more interesting philosophical issues generated by quantified modal logics.
Chapter 9 gives Gentzen-style natural deduction systems for S4 and S5. Which is all technically fine, of course. But I do wonder about how ‘natural’ Gentzen proofs are here, compared with modal logic done Fitch-style. I certainly found the latter easier to motivate in class. So Gentzen-style modal proof systems would not be my go-to choice for a deductive system to introduce to philosophy student. Obviously Restall and Sandefer differ!
Overall, then, I don’t think the presentations will trump the current suggested introductory readings on modal logic in the Study Guide.