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1 Intro

Here’s one version Godel’s 1931 First Incompleteness Theorem:

If T is a nice, sound theory of arithmetic, then it is incomplete, i.e. there
are arithmetical sentences ( such that 7" proves neither ¢ nor —.

There are three things here to explain straight away:

1. A theory is sound if all its theorems are true (typically, this is because the theory
has true axioms and truth-preserving inference rules).

2. We don’t mean anything exotic here by a theory of arithmetic. We just mean
that T can at least talk about natural numbers and can express generalizations
about them. Also T can at least talk about the successor function which takes
us from one number to the next, and can talk about addition, multiplication,
and exponentiation. (Maybe T can talk about a great deal more.)

3. As to mice, that’s just casual shorthand here for the assumption that T is a
properly constructed formal theory. That is to say, in particular, that it is
mechanically decidable what is to count as an axiom of the theory. And it is
mechanically decidable what is to count as a well-constructed formal derivation
of some theorem from the axioms according to 1”’s proof-system.

Godel’s Theorem is an astonishing result. It means you can’t regiment arithmetical
truth into a nice sound theory 7. There will always be an arithmetical ¢ sentence such
that T proves neither ¢ nor —p. But one of those sentences is true, hence there’s an
arithmetical truth such that 7" can’t prove it.

So, just for a start, bang goes the Frege/Russell logicist programme of trying to
show that all true arithmetic (indeed, all classical analysis) can be derived from a
few logical principles plus some crafty definitions. Such a programme can’t ever be
completed: any nice sound theory we construct will miss out on some truths.

So how do we prove Godel’s Theorem? Seventy-something years on, we know a
variety of significantly different ways of doing the job. But what are the nicest, most
elegant, most insightful ways? The great mathematician Paul Erd6s had the fantasy
of a Book in which God keeps the best proofs of mathematical theorems. What proofs
of Godel’s result belong in The Book? A good question! This talk sketches one Book
proof.



2 Nice theories

Let’s start with a couple of easy results about nice, properly axiomatized theories.!

First

Theorem 1 The theorems of a properly axiomatized theory T are effectively enumer-
able.

Proof A set is ‘effectively enumerable’ if it is either empty or there is a computer
program that (in principle, when run for ever!) lists its members in some order,
repetitions allowed. Here’s how to write a program to spit out all the theorems of
T. Write a program that generates in turn — in some kind of ‘alphabetical order’ —
the strings of symbols of T’s alphabet. By hypothesis, if T is properly axiomatized,
we’ll be able to mechanically select out those strings that are properly formed proofs
in T”s logic, which only appeal to axioms in 7”s list of axioms. So that means we can
mechanically select out those strings which are proofs in the theory T'. Whenever we
find such a proof, print out the proof’s conclusion. And that will give us a mechanically
generated list of T’s theorems. X

And here’s a converse result:

Theorem 2 For any effectively enumerable set of sentences X, there is a properly
azxiomatized theory T whose theorems are the members of 2.

Proof For the null case where ¥ is empty take T to be the empty theory with no
axioms and no rules of inference!

Otherwise, suppose the members of ¥ can be effectively listed off ¢1, w2, ©3, @4, . . ..
Now consider the following theory T

1. Its axioms are @1, P2 A 2,03 A Y3 A Y3, 04 ANwa ANpa AN pa,. ...

2. Its sole proof-building rule is that a deduction is always a two-line affair, consist-
ing of an axiom followed by one of the conjuncts in the axiom (there is a single
inference move eliminating the conjunctions): and this two-line structure counts
as a proof of its second line.

OK, that’s a bit strange, but T is a perfectly well defined axiomatic theory. For (1)
it is effectively decidable what is an axiom. Just inspect a wff: see if it is an n-fold
conjunction Y AP A .. .. If it isn’t, it isn’t an axiom. If it is, count n, then enumerate
the ¢;, and see whether 1) = ¢,,.2

And (2) it is effectively decidable what’s a proof. Just check it indeed has the form
of an axiom followed by one of its conjuncts.

But T’s theorems, by construction, are exactly the ;. So we are done. X

In the talk as delivered, I had an aside about second-order Peano Arithmetic before this section,
explaining why Go6del’s Theorem didn’t apply to it. But this proved unnecessarily distracting. So I've
deleted that section here.

Why didn’t we just take the axioms of T to be the ¢;? Because we couldn’t then mechanically
decide whether a given wif v is an axiom. True, if ¢ is one of the ¢; we could show it to be by listing
off p1, Y2, 3, @4, ... and noting that ¢ eventually turns up. But if ¢ isn’t an axiom, then this strategy
of running through the ¢; wouldn’t demonstrate the fact.



3 Godel’s Theorem and the truths of arithmetic

Given our first two theorems we quickly get another result:

Theorem 3 Gadel’s Incompleteness Theorem is equivalent to the claim that the truths
of arithmetic can’t be effectively enumerated.

Proof (i) Suppose the truths of arithmetic could be effectively enumerated (that’s
the truths couched in the language of successor, addition, and multiplication, plus
some standard logical apparatus). Then by Theorem 2, there would be a properly
axiomatized theory T' that proved all and only these truths. So given an arithmetic
sentence ¢, T" would prove either ¢ or —p, whichever is the truth. So 7" would be a
sound, complete theory.

Hence, contraposing, if Godel’s Theorem is right, i.e. if there can’t be a complete
properly axiomatized and sound theory T, the truths can’t be effectively enumerated.

(ii) Now for the other direction. Suppose the truths of arithmetic can’t be effectively
enumerated. But we know from Theorem 1 that the theorems of a given formalized
arithmetic T' can be effectively enumerated. So there is a mismatch between the truths
and the T-theorems.

Assuming we are dealing with a sound formalized arithmetic T, T proves no false-
hoods. The mismatch between the truths and the T-provable sentences must therefore
be due to the there being truths which T can’t prove. Suppose ¢ is one of these.
Then T doesn’t prove ¢; and since — is false, T" doesn’t prove that either. So T is
incomplete. X

So Theorem 3 signposts one route to establishing Godel’s Theorem: namely, prove
that the truths of arithmetic can’t be effectively enumerated. That’s the route we are
going to take.

It is worth saying that this wasn’t Godel’s route in 1931, by the way. It couldn’t
have been because the general theory of computation, and so the general theory of
effective enumerability, wasn’t in place until about 1936.

4 Some more background

So to get Godel’s Theorem by our route, we want to establish that the truths of
arithmetic can’t be effectively enumerated.

Well, we can’t get something for nothing, so we’ll need some background stuff to
work with. But we can get by with surprisingly little.

First, a notational preliminary. An arithmetic theory will be able to frame a series
of expressions ‘0, S0, SS0, SSSO, .. .". Call these the standard numerals. We’ll abbreviate
the numeral for n by n.

Next, a remark on coding tricks. We can, in particular, use a numerical coding
scheme to assign numerical codes to code up computer programs. A nice way of doing
it is to use powers of primes. We associate symbols in the program with numbers;
then we code up a string of n symbols by taking the first n primes, and raising each
prime to the number of the associated symbol. The fact that a formal arithmetic
knows about the exponential function means it can easily handle facts about codings.
(Indeed that’s exactly why I'm focusing on arithmetics with the exponential function
available, though we can strictly speaking do without using a trick found by Gdodel.)

Now let’s state three easy but important facts:



Fact 1. Suppose R is a decidable relation among numbers (i.e. suppose that there is a
mechanical way of deciding whether Rmn for given any numbers m, n). Then
we can construct a corresponding formal expression ¢ using just addition, mul-
tiplication and exponentiation such that Rmn if and only if the formal sentence
p(m,n) is true. In other words, using limited resources we can construct a ¢
which is a formal expression for R.

Fact 2. If ¥ is effectively enumerable, then there is some decidable relation R such
that n € ¥ if and only if dsRsn.

Fact 3. We can effectively enumerate (the recipes for generating) the effectively enu-
merable sets of numbers. So we can effectively list off those sets Wy, W1, Wa, .. ..

Why do these facts hold?

Proof sketch for Fact 1 If R is decidable, that means there is a computer program
which tells us whether Rmn (use some all-purpose programming language). So Rmn if
and only if the decision program with inputs m, n terminates with a ‘yes’ verdict. But
now let’s use coding tricks to encode this sort of fact about our computer program into
corresponding arithmetical statements. That way, we’ll get an arithmetical statement
involving m, n which holds just when Rmn.

Proof sketch for Fact 2 Suppose some mechanical procedure P effectively enumerates
3. Step through this procedure one step at a time; and consider the relation Rsn
that holds just in case at step s the procedure P spits out the number n. Then R is
decidable (there is a mechanical method of deciding whether P spits out n at step s —
just run procedure P for s steps and see what happens!). And trivially, P eventually
spits out n if and only if for some step-number s, Rsn holds.

Proof sketch for Fact 8 The third of our facts holds because we can effectively enu-
merate possible computer programs (in some all-purpose programming language) for
spitting out lists of numbers.

5 Proving the non-effective enumerability of arithmetical
truths

So, with those Facts under our belt, here again is the pivotal result we want to establish:

Theorem 4 The truths of arithmetic can’t be effectively enumerated.

Proof Recall Fact 3, and consider an effective enumeration of the effectively enumer-
able numerical sets Wy, Wy, Wa, .. ..

Now define the set K =g¢¢ {€ | e € W} and its complement K =g¢ {e | e € We}.
Then here are two facts about this pair of sets:

1. K is effectively enumerable. You enumerate it by a kind of zigzag computation.
Start be examining the first two members of Wy, then the first of Wy, then the
third member of Wy, the second of W1, the first of Ws, then the next members
of Wy, W1, Wa, and the first of W3, and so on. At each step as you go along,
when you look at another member of W, you check whether it is e, and if it is,
you print it out. Eventually, every e such that e € W, will be printed out.



2. K is not effectively enumerable. For any k, k € K if and only if k ¢ Wj.
Hence, K cannot be identical to any of the Wy, so K isn’t one of the effectively
enumerable sets.

Now, because K is effectively enumerable, that means by Fact 2 there is a some
decidable relation R such that n € K if and only if 3sR(s,n). Now, since R is decidable
there is by Fact 1 a formal two-place expression R of the language of arithmetic which
expresses R. In particular, then, we’ll have

n € K if and only if 3sR(s,n) is true;
n € K if and only if ~3sR(s, ) is true.

Concentrate on the second equivalence. If the truths of arithmetic .7 were effectively
enumerable, we’d be able run through 7, and whenever we came across sentence of
the type —3sR(s,n), we could put n on a list of members of K, and that way get an
effective enumeration of K. But we seen that K is not effectively enumerable. So .7
isn’t effectively enumerable. Which is what we wanted to show. X

6 A proof from the Book?

I hope you agree that this proof of Theorem 4 is rather beautiful. We took three
simple Facts — each of them very unsurprising penny-plain Facts (the sort of things
that should strike you as true after even the briefest, arm-waving, explanation). Then
we defined a pair of sets K /K. Now that did involve a neat little trick, but it’s a very
familiar type of trick — for it is just same sort of dodge that is involved for example
in the Cantorian proof that the powerset of the natural numbers is uncountable. And
with these easy ingredients we almost immediately get the result that the truths of
arithmetic can’t be effectively enumerated.

Now put together Theorem 4 with the elementary result we summed up as Theorem
3, and we get — as desired —

Theorem 5 If T is a nice, sound theory of arithmetic, then there are arithmetical
sentences o such that T proves neither ¢ nor —p.

So, overall, that is all remarkably neat and simple. Surely this proof of Gédel’s Theorem
deserves to be in Erdos’s Book.

7 What does our proof teach us?

Now, different proofs of a theorem typically highlight different relationships in the local
mathematical landscape: so what is revealed by this proof?

Perhaps the major lesson is a negative one. Let’s say that a Godel sentence is an
arithmetical sentence which — in virtue of some background numerical coding scheme
— says of itself ‘I am unprovable’. Then our argument shows that a proof of incom-
pleteness doesn’t have to depend on explicitly constructing a Godel sentence. Now,
Godel’s original paper does go by that route. And he commented himself on analogies
between his construction and self-referential paradoxes like the Liar Paradox. That
makes too many people, when they first encounter Goédel’s argument, feel that there
must be something suspicious going on (as if they are being given a paradox rather
than a theorem). And even when they get over that first reaction, the impression can



remain that Godel sentences must be some kind of perverse oddity. The thought might
be encouraged: just as, outside the logic classroom, we get by perfectly well with the
idea of truth, without having to worry about sentences like ‘this sentence is false’; so
arithmeticians can surely get by perfectly well without stumbling over sentences that
somehow say ‘I am unprovable’.

However, our proof shows that the incompleteness phenomenon isn’t (so to speak)
a little local difficulty. You might have hoped that we could effectively list off the sup-
posedly dodgy self-referential Gédel truths, put them to one side, and then give a nice
axiomatized formal theory T' covering the rest of arithmetic, the non-dodgy, sensible
stuff. But we can’t do that because then we’d then have two effectively enumerable
lists, a list of the peculiar unprovable Godel truths and then the T-theorems. And
interweaving these lists would give us an effective enumeration of all the arithmetical
truths, which we’ve just shown is impossible.

What about positive implications of our proof? Well, I'm not sure there are positive
lessons that are particularly distinctive: the positive implications are pretty much
the same as those of other kinds of proof of Gédel’s Theorem. But still, maybe our
arguments do make the implications especially vivid. For what we’ve shown is that
any enumerable set of theorems can’t include every truth of the type —3sR(s,n) which
correlates to membership facts about K. These truths are in a way very simple ones:
they are equivalent to truths of the form Vs—R(s,n)) — which makes them, in the
logician’s jargon, II; truths. That is to say, they are universally quantified claims
about decidable properties. We can easily prove any instance particular —R(m,n) is
true when it is true: yet any properly axiomatized theory will fail to prove some of
their true universal quantifications. Add more proof methods, assume new axioms,
and we’ll be able to prove more and more of those II; truths; but we’ll never be able
to capture all of them so long as our theory remains under formal control and properly
axiomatized.

To borrow a well-known remark from Michael Dummett:

Godel’s discovery amounted to the demonstration that the class of [princi-
ples for establishing quantified claims| cannot be specified exactly once and
for all, but must be acknowledged to be an indefinitely extensible class.

Dummett tries to find some deep philosophical significance in this observation, but
that’s another story, which I don’t understand and so don’t have anything to say
about. But whatever its significance for philosophers, the message for mathematicians
is rather cheering. For it means that there will always be a role for mathematicians
to dream up and justify new axioms (for example in the higher reaches of set theory),
and then new arithmetical truths will become provable. But we’ll never complete the
job: even if they only care about proving arithmetic truths, mathematicians will never
be out of a job.



