Preface

Why these lecture notes? After all, | have already written a rather long book,
An Introduction to GedelOs Theoremgoriginally CUP, now freely downloadable).
Surely that’s more than enough to be going on with?

Ah, but there’s the snag. It is more than enough. In the writing, as is the
way with these things, the book grew far beyond the scope of the original notes
on which it was based. And while | hope the result is still quite accessible to
someone prepared to put in the required time and elort, there is — to be frank —
a lot more in the book than is really needed by those wanting a first encounter
with the famous incompleteness theorems.

Some readers might therefore appreciate a cut-down version of some of the
material in the book — an introduction to the Introduction, if you like. Hence
Gedel Without (Too Many) Tears. There are occasional references here to sec-
tions of the book, pointing to where topics are discussed further: but you don’t
have to chase up those references to get a more limited but still coherent story
in these notes.

A first version — call it GWT1 - was written to accompany the last few out-
ings of a short lecture course given in Cambridge (which was also repeated at
the University of Canterbury, NZ). Many thanks to many students for useful
feedback.

GWT1 was intended to bridge the gap between classroom talk’n’chalk which
just highlighted the Really Big ldeas, and the more detailed treatments of topics
now available in my book. However, despite that intended role, I did try to make
GWT1 reasonably stand-alone.

Those notes were tied to the first edition of my book, IGT1, as published in
2007. A significantly improved second edition of the book, IGT2, was published
in 2013. So | updated GWTL1 in 2014 to make a corresponding second version of
the notes — call it GWT2.

It’s time to revisit the notes, and make some minor improvements. So here is
GWT3.

Who are these notes for? Someone who wants more than an arm-waving informal
discussion, who wants to understand what Godel’s incompleteness theorems say
and have some real sense of how they can be proved. There isn’t a lot of purely
philosophical discussion here: the aim, rather, is to put you in a position where
you have a secure enough initial understanding of what’s going on logically

iv Preface

that you can then sensibly make a start on thinking about the philosophical
implications.

What background in logic do we presuppose? What do you need to bring to the
party? Very little. If you have done a standard introductory logic course, and
have the patience to follow some simple mathematical arguments, you should
have little di"culty in following the exposition here.

On notation: you probably don’t need to be told but, just in case, ‘i!” abbre-
viates ‘if and only if’, and ‘O’ marks the end of a proof.

A number of people kindly let me know about typos and more serious mistakes in
earlier versions, including Henning Makholm. And | must already warmly thank
a number of people for corrections and helpful comments as | post this version
chapter-by-chapter. | should in particular mention Sam Butchart, David Furcy,
and Rowsety Moid. I will no doubt continue to introduce some more mistakes in
later chapters. So please let me know by emailing peter_smith@logicmatters.net.

mailto:peter_smith@logicmatters.net

1 Incompleteness, the very idea

1.1 A brief note on Kurt Godel

By common agreement, Kurt Godel (1906-1978) was the greatest logician of the
twentieth century. Born in what is now Brno, and educated in Vienna, Godel
left Austria for the USA in 1940, and spent the rest of his life at the Institute
for Advanced Study at Princeton.

Godel’s doctoral dissertation, written when he was 23, established the com-
pletenesstheorem for the first-order predicate calculus (showing that a stan-
dard proof system for first-order logic indeed captures all the semantically valid
inferences).

Later he would do immensely important work on set theory, as well as make
seminal contributions to proof theory and to the philosophy of mathematics. He
even wrote on models of General Relativity with ‘closed timelike curves’ (where,
in some sense, time travel is possible). Always a perfectionist, he became a very
reluctant publisher (some of his philosophically most interesting work is in the
volume of Unpublished Essays and Lectures in his Collected Works).

Talk of ‘Godel’s Theorems’ typically refers, however, to the two incompleteness
theorems presented in an epoch-making 1931 paper. And it is these theorems,
and more particularly, the First Theorem, that these notes are all about. (Yes,
that’s right: Godel proved a ‘completeness theorem’ and also ‘incompleteness
theorems’. We’ll explain the dilerence in a moment!)

The impact of the incompleteness theorems on foundational studies is hard
to exaggerate. For, putting it crudely and a little bit tendentiously, they sabo-
tage the ambitions of two major foundational programs — logicism and Hilbert’s
programme. We’'ll say just a little about logicism in this chapter, and something
about Hilbert’s programme much later, in Chapter 15, when we get round to
discussing the Second Theorem. But you don’t have to know anything about
this background to find the two theorems intrinsically fascinating.

1.2 The idea of an axiomatized formal theory

The title of Godel’s great 1931 paper translates as OOn formally undecidable
propositions of Principia Mathematica and related systems 10
The ‘I’ here indicates that it was intended to be the first part of what was

1

1 Incompleteness, the very idea

going to be a two part paper, with Part Il spelling out the proof of the Second
Theorem which is only very briefly indicated in Part I. But Part Il was never
written. We’ll see in due course why Gddel thought he didn’t need to bother.

This title itself gives us a number of things to explain. What’s a ‘formally
undecidable proposition’? What is Principia Mathematica ? Ok, you’ve probably
heard of that triple-decker work by A. N. Whitehead and Bertrand Russell, now
more than a century old and very little read except by historians of logic: but
what is the project of that book? And what counts as a ‘related system’ — a
‘system’ suitably related, that is, to the one in Principia ? In fact, just what is
meant by ‘system’ here?

Let’s take the last question first. A ‘system’ (in the relevant sense) is an
axiomatized theory — or more precisely, an electively axiomatized formal theory.
But what does that mean?

The general idea of an axiomatized formal theory is no doubt familiar. Roughly:
you fix on a formalized language, set down some axioms stated in that language,
specify some apparatus for formally deriving results from your axioms, and there
you have a theory. But now we need to be more explicit: our focus is going to
be on theories which, in headline terms, have

(i) an electively formalized language,
(i) an electively decidable set of axioms,
(iii) an electively formalized proof system.

We'll explain these headlines in just a moment. But first, the new idea you need
to get your head round here is the intuitive notion of elective decidability.
Let’s say, as a first shot:

Defn. 1. A property P (debPned over some domain of object®) is electively
decidable i! thereOs an algorithm (a Pnite set of instructions for a deterministic
computation) for settling in a Pnite number of steps, for any objecto € D,
whether o has property P.

Likewise, a set# is electively decidable i! the property of being a member of
that set is electively decidable.

Relatedly, the answer to a questiony is electively determinable i! there is
an algorithm which gives the answer (again by a deterministic computation, in
a bnite number of steps).

To put it another way, a property is electively decidable just when there’s a
step-by-step mechanical routine for settling whether o has property P, such that
a suitably programmed deterministic computer could in principle do the trick
(idealizing away from practical constraints of time, etc.).

Here are a couple of familiar examples from elementary logic: the property
of being a tautology is electively decidable (by a truth-table test!); and we can
electively determine what the main connective of a sentence is (by some bracket
counting!).

How satisfactory are our definitions, though? We’ve just invoked the idea of
what a computer (in principle) could do by implementing some algorithm. But

2

The idea of an axiomatized formal theory

doesn’t that leave quite a bit of slack in the definition? Why shouldn’t what a
computer can do depend, for example, on its architecture (even given that we
are idealizing, and e.g. putting no time limit on its computations, or the amount
of memory-space needed)?

It turns out that the notion of elective decidability is in fact very robust: what
is algorithmically-computable-in-principle according to one sensible sharpened-
up definition turns out to be exactly what is algorithmically-computable-in-
principle according to any other sensible sharpened-up definition. Of course, it’s
not at all trivial that this is how things are going to pan out. So for the moment
you are going to have to take it on trust (sorry!) that Defn. 1 can be put into
good shape by sharpening the notion of elective decidability.

Against this background we can now explain those conditions (i) to (iii) for
being an electively axiomatized formal theory.

(i) We’ll assume that the basic idea of a formalized languageL is familiar from
earlier logic courses. But note, a language, for us, has both a syntax and an
intended semantics

1. The syntactic rules fix which strings of symbols form terms, which form
w!s (i.e. well-formed formulas), and in particular which strings of symbols
form sentences, i.e. closed w!s with no unbound variables dangling free.

2. The semantic rules assign unique interpretations, i.e. assignments of truth-
conditions, to every sentence of the language.

It is not at all unusual for logicians to call a system of uninterpreted strings
of symbols a ‘language’. But | really think we should deprecate that usage.
Sometimes below I’ll talk about an ‘interpreted language’ for emphasis: but
strictly speaking — in my idiolect — that’s redundant.

The familiar way of presenting the syntax of a formal language is by (a)
specifying some finite set of symbols,’ and then giving rules for building up
expressions from these symbols. And we standardly do this in such a way that
(b) we can electively decide whether a given string of symbols counts as a term
or w! or a w! with one free variable or a sentence (we can give algorithms which
decide well-formedness, etc.).

The familiar way of presenting the semantics is then to assign semantic values
to the non-logical expressions of the language, fix domains of quantification,
and then give rules for working out the truth-conditions of longer and longer
expressions in terms of the way they are syntactically built up from their parts.
In a standard formal language, we can electively recover from a sentence its
‘constructional history’, i.e. mechanically determine the way it is syntactically
built up from its parts; then, relying on this information, (c) we can use the
semantic rules to mechanically work out the interpretation of any given sentence.

L «Finite? But might we not need an unlimited, potentially infinite, supply of variables,
say?” Sure. But we can build up an infinite list of variables from finite resources, as in
x,x! x! x!" 0 .. We lose no relevant generality for our purposes in keeping our basic
symbol-set finite.

3

1 Incompleteness, the very idea

(Read that carefully! What we can mechanically work out is what the sentence
says But it is one thing to work out the conditions under which a sentence
is true, and — usually — something quite dilerent to work out whether those
conditions are met, i.e. work out whether the sentence actually is true!)

Let’s say that a formalized language which shares these characteristics (a),
(b) and (c) is electively formalized. So, in sum,

Defn. 2. An interpreted language L is electively formalized i! (a) it has a
Pnite set of basic symbols, (b) syntactic properties such as being a term of the
language, being a w!, being a w! with one free variable, and being a sentence,
are electively decidable and the syntactic structure of any sentence is electively
determinable, and (c) this syntactic structure together with the semantic rules
can be used to electively determine the unique intended interpretation of every
sentence.

Why do we want (b) the syntactic properties of being a sentence, etc., to be
electively decidable? Well, the point of setting up a formal language is, for a
start, to put issues of what is and isn’t e.g. a sentence beyond dispute, and the
best way of doing that is to ensure that even a suitably programmed computer
could decide whether a string of symbols is or is not a sentence of the language.
Why do we want (c) the unique truth-conditions of a sentence to be electively
determinable? Because we don’t want any ambiguities or disputes about inter-
pretation either.

(ii) Some logic books define a theory to be just any old set of sentences. We
are concerned, though, with the narrower notion of an axiomatized theory We
highlight some bunch of sentences # as giving axioms for the theory T'; we give T'
some proof system i.e. some deductive apparatus; and then all the sentences that
are derivable from axioms in # using the deductive apparatus are 7"s theorems

But what does it take for 7" to be an electively axiomatized theory, apart
from its using an electively formalized language? For a start, we require it to
be electively decidable what’s an axiom of 7. Why? Because if we are in the
business of pinning down a theory by axiomatizing it, then we will normally
want to avoid any possible dispute about what counts as a legitimate starting
point for a proof by ensuring that we can mechanically decide whether a given
sentence is indeed one of the axioms.

(iii) But just laying down a bunch of axioms would be pretty idle if we can’t
deduce conclusions from them! An axiomatized theory T' will, as we said, come
equipped with a deductive proof system, a set of rules for deducing further
theorems from our initial axioms. But a proof system such that we couldn’t
routinely tell whether its rules are in fact being followed again wouldn’t have
much point for practical purposes. Hence we naturally also require that a theory
has an electively formalized proof system, i.e. one where it is electively decidable
whether a given array of w!s is indeed a well-constructed proof from the axioms
according to the rules of the deductive system.

‘Formally undecidable propositions’

Note, it doesn’t matter for our purposes whether the proof system is e.g. a
Frege/Hilbert axiomatic logic, a natural deduction system, a tree/tableau sys-
tem, or a sequent calculus — so long as it is indeed electively checkable that a
candidate proof-array has the property of being properly constructed according
to the rules of the proof system.

So, in summary of (i) to (iii),

Defn. 3. An electively axiomatized formal theory T has an electively formal-
ized languageL, a certain class of L-w!s are picked out as axioms where it is
electively decidable whatOs an axiom, and it has a proof system such that it is
electively decidable whether a given array of w!s is indeed a proof from the
axioms according to the rules.

Careful, though! To say that, for a properly formalized theory T' it must be
electively decidable whether a candidate T-proof of ¢ is indeed a kosher proof
is not, repeat not, to say that it must be electively decidable whether ¢ actually
has a proof.

To stress the point: it is one thing to be able to electively check that some
proposed proof follows the rules; it is another thing to be able to electively decide
in advancewhether there exists a proof waiting to be discovered. (Looking ahead,
we will see as early as Chapter 4 that any formal electively axiomatized theory T
containing a modicum of arithmetic is such that, although you can mechanically
check a purported proof of ¢ to see whether it is a proof, there’s no mechanical
way of telling of an arbitrary ¢ whether it is provable in 7" or not.)

1.3 ‘'Formally undecidable propositions’ and negation incompleteness

Henceforth, when we talk about theories, we always mean electively axiomatized
formal theories (unless we explicitly say otherwise).
Some familiar logical notation, applied to formal theories:

Defn. 4. ' + ¢O says: there is a formal deduction iTOs proof system from
T-axioms to the sentencep as conclusion (in short, ¢ is a T-theorem).

Defn. 5. " ! »0O says: any model (re)interpreting the non-logical vocabulary
that makes all the axioms ofl’ true makes true.

So ‘F’ o"cially signifies provability in T', which is a syntactically-definable rela-
tion. While ‘! ” signifies logical entailment, a semantic relation defined by gener-
alizing over interpretations.?

2You said that a theory’s language has a built-in interpretation: now you seem to be forget-
ting that.” Not so. Recall, some premisses logically entail a given conclusion if the inference
from the premisses to the conclusion is necessarily truth-preserving just in virtue of the
distribution of logical operators in the relevant sentences . That’s why our official definition
of the notion abstracts away from the given meaning of the non-logical constituents of the
sentences while keeping the meaning of the logical apparatus fixed, and generalizes over all
possible reinterpretations of the non-logical constituents.

5

1 Incompleteness, the very idea

Of course, we normally want a formal deduction to indeed be genuinely truth-
preserving; so we will want our proof system to respect logical entailments,
requiring that 7'+ ¢ only if T'! . In a word, we require a deductive system in
a sensible theory to be sound

We can’t in general insist on the converse, however. But take the important
special case where the theory T has a standard first-order logical system. In a
classical first-order setting, if an inference from 7' to ¢ is semantically valid, i.e.
is necessarily truth-preserving, then there will be a formal deduction of ¢ from
the axioms of T'. This was shown for a Hilbert-style deductive system by Godel
in his doctoral thesis: hence GedelOs completeness theorem

Some more key definitions. We will be interested in what claims a theory T' can
settle, one way or the other. So we say

Defn. 6. If T is a theory, and ¢ is some sentence of the language of that theory,
then T formally decides ¢ i! either T+ ¢ or T+ —.

Hence,

Defn. 7. A sentencey is formally undecidable by T'i! T'! p and T'! —.

A related bit of terminology:

Defn. 8. A theory T is negation complete i! it formally decides every closed
w! of its language D i.e. for every sentencep, T+ ¢ or T F —.

So there are ‘formally undecidable propositions’ in a theory T if and only if T
isn’t negation complete.

It might help to fix ideas, and distinguish two notions of completeness, if we
take a toy example. Suppose theory T' is built in a propositional language with
just three propositional atoms, p,q,r, and the usual propositional connectives.
We give T a standard propositional classical logic (pick your favourite flavour of
system!). And assign 7 just a single non-logical axiom: (p A —r).

Then, by assumption, 7" has a semantically-complete logi¢ since standard
propositional calculi are complete. That is to say, for any w! ¢ of T”s limited
language, if T'! ¢, i.e. if T tautologically entails ¢, then T'+ .

However, trivially, T' is not a negation-complete theory For example T' can’t
decide whether q is true. And there are lots of other wls ¢ for which both T'! ¢
and T'! —.

Our toy example shows that it is very, very easy to construct negation-incomplete
theories with formally undecidable propositions: just hobble your theory T' by
leaving out some key basic assumptions about the matter in hand!

But suppose we are trying to fully pin down some body of truths (e.g. the
truths of basic arithmetic) using a formal theory T'. We fix on an interpreted
formal language L apt for expressing such truths. And then we’d ideally like
to lay down enough axioms framed in L such that, for any L-sentence ¢, then

6

Seeking a negation-complete theory of arithmetic

T + ¢ just when ¢ is true. So, making the classical assumption that for any
sentence ¢, either ¢ is true or —y is true, we’d very much like 7" to be such that
either T+ ¢ or T'+ =y (but not both!).

In other words, it is natural to aim for theories 7" which are indeed negation
complete.

1.4 Seeking a negation-complete theory of arithmetic

The elementary arithmetic of addition and multiplication is child’s play (liter-
ally!). So we should be able to wrap it up in a nice formal theory, aiming indeed
for negation completeness.

Let’s first fix on a formal language of basic arithmetidn which we can regiment
elementary arithmetical propositions. We will give this language

(i) a term ‘0’ to denote zero; and
(ii) a sign ‘S’ for the successor function (the ‘next number’) function.

This means that we can construct the sequence of terms ‘0’, ‘S0’, ‘SS0’, ‘SSS0’,
... to denote the natural numbers 0, 1, 2, 3, These are our language’s stan-
dard numerals and by using a standard numeral our language can denote any
particular number.

We will also give this language

(iii) function signs for addition and multiplication, plus
(iv) the usual first-order logical apparatus, including the identity sign: quanti-
fiers are interpreted as running over the natural numbers.

(We aren’t building in subtraction and division as primitives, however. But sub-
traction is definable in terms of addition, formalizing the idea that n — m is the
number k£ such that m + k& = n, if there is such a number. And similarly division
is definable in terms of multiplication.)

Now, it is entirely plausible to suppose that, whether or not the answers are
readily available to us, questions posed in this language of basic arithmetic have
entirely determinate answers. Why? Well, take the following two bits of data:

(a) The fundamental zero-and-its-successors structure of the natural number
series.

(b) The nature of addition and multiplication as given by the school-room
explanations.

By (a) we mean that zero is not a successor, every number has a successor,
distinct numbers have distinct successors, and so the sequence of zero and its
successors never circles round but marches o! for ever: moreover there are no
strays — i.e. every natural number is in that sequence starting from zero. It is
surely plausible to suppose that (a) and (b) together should indeed fix the truth-
value of every sentence of the language of basic arithmetic (after all, what more
could it take?).

1 Incompleteness, the very idea

But (a) and (b) seem so very basic and straightforward. So we will surely
expect to be able to set down some axioms which characterize (a) the number
series, and (b) addition and multiplication: in other words, we should surely be
able to frame axioms which codify what we teach the kids. And then the thought
that (a) and (b) fix the truths of basic arithmetic becomes the thought that our
axioms capturing (a) and (b) should settle every such truth. In other words, if ¢
is a true sentence of the language of successor, addition, and multiplication, then
@ is provable from our axioms (and if ¢ is a false sentence, then —¢ is provable).

In sum, whatever might be the case with fancier realms of mathematics, it is
very natural to suppose that we should at least be able to set down a negation
complete (and electively axiomatized) theory of basic arithmetic.

1.5 Logicism and Principia

It is natural to ask: what could be the status of the axioms of a formal theory of
arithmetic — e.g. the status of a truth like ‘every number has a unique successor’?
That hardly looks like a mere empirical generalization (something that could in
principle be empirically refuted).

I suppose you might be a Kantian who holds that the axioms encapsulate
‘intuitions’ in which we grasp the fundamental structure of the numbers and the
nature of addition and multiplication, where these ‘intuitions’ are a special cog-
nitive achievement in which we somehow represent to ourselves the arithmetical
world.

But talk of such intuitions is, to say the least, puzzling and problematic.
So we could very well be tempted instead by Gottlob Frege’s seemingly more
straightforward view that the axioms are analytic, simply truths of logic-plus-
definitions. On this view, we don’t need Kantian ‘intuitions’ going beyond logic:
logical reasoning from definitions is enough to get us the axioms of arithmetic,
and more logic gives us the rest of the arithmetic truths from these axioms. This
Fregean line is standardly dubbed logicism.

If this is to be more than wishful thinking, we need a well-worked-out logical
system within which to pursue a logicist deduction of arithmetic. Famously, and
to his eternal credit, Frege gave us the first competent system of quantificational
logic. But equally, famously, Frege’s own attempt to be a logicist about basic
arithmetic (in fact, for him, about more than basic arithmetic) hit the rocks,
because — as Russell showed — the full deductive proof system that he used, going
beyond core quantificational logic, is in fact inconsistent in a pretty elementary
way. Frege’s full system is beset by Russell’s Paradox.

That devastated Frege, but Russell himself was undaunted. Still gripped by
logicist ambitions he wrote:

All mathematics [yes! — all mathematics] deals exclusively with con-
cepts definable in terms of a very small number of logical concepts,
and ... all its propositions are deducible from a very small number
of fundamental logical principles.

Godel’s bombshell

That’s a huge promissory note in Russell’s The Principles of Mathematics (1903).
And Principia Mathematica (three volumes, though unfinished, 1910, 1912, 1913)
is Russell’s attempt with Whitehead to start making good on that promise.

The project of Principia, then, is to set down some logical axioms and def-
initions in which we can deduce, for a start, all the truths of basic arithmetic
(so giving us a negation-complete theory at least of arithmetic). Famously, the
authors eventually get to prove that 1 +1 = 2 at *110.643 (Volume 1l, page
86), accompanied by the wry comment, ‘The above proposition is occasionally
useful’. So far so good! But can Russell and Whitehead, in principle, prove every
truth of arithmetic?

1.6 Godel's bombshell

Principia , frankly, is a bit of a mess — in terms of clarity and rigour, it’s quite a
step backwards from Frege. And there are technical complications which mean
that not all Principia 's axioms are clearly ‘logical’ even in a stretched sense. In
particular, there’s an appeal to a brute-force Axiom of Inbnity which in elect
states that there is an infinite number of objects; and then there is the notoriously
dodgy so-called Axiom of Reducibility. But we don’t need to go into details; for
we can leave those worries aside — they pale into insignificance compared with
the bombshell exploded by Godel.

For Godel’s First Incompleteness Theorem sabotages not just the grand project
of Principia, but shows that any attempt to pin down all the truths of basic
arithmetic in a theory with nice properties like being electively axiomatized
is in fatal trouble. His First Theorem says — at a very rough first shot — that
nice theories containing enough arithmetic are always negation incompletefor
any nice theory T', there will be arithmetic truths that can’t be proved in that
particular theory.

A moment ago, it didn’t seem at all ambitious to try to capture all the truths
of basic arithmetic in a single (consistent, electively axiomatized) theory. But
attempts to do so — and in particular, attempts to do this in a way that would
appeal to Frege and Russell’s logicist instincts — must always fail. Which is a
rather stunning result!3

How did Godel prove his result? Well, let’s pause for breath; the next chapter
explains more carefully what the theorem (in two versions) claims, and then in
Chapter 3 we outline a Godelian proof of one version.

3‘Hold on! I’ve heard of neo-logicism which has its enthusiastic advocates. How can that be
so if Godel showed that logicism is a dead duck?’ Well, we might still like the idea that
some logical principles plus what are more-or-less definitions (in a language richer than
that of first-order logic) together semantically entail all arithmetical truths, while allowing
that we can’t capture the relevant entailment relation in a single properly axiomatized
deductive system of logic. Then the resulting overall system of arithmetic won’t count as a
formal axiomatized theory of all arithmetical truth since its proof system is not effectively
formalizable, and Godel’s theorems don’t apply. But all that is another story.

9

2 The First Theorem, two versions

2.1 Soundness, consistency, etc.

Let’s read into the record two standard definitions:

Defn. 9. A theory T is sound i! its axioms are true (on the interpretation built
into TOs language), and its logic is truth-preserving, so all its theorems are true.

Defn. 10. A theory T is (syntactically) consistent il there is no ¢ such that
T+ ¢ and T + —¢, where 60 isTOs negation operator.

In a classical setting, if T is inconsistent, then T + ¢ for all). And of course,
soundness implies consistency. We shouldn’t need to delay over these no doubt
familiar ideas.

But we also need another (quite natural) definition to use in this chapter:

Defn. 11. The formalized interpreted languagel. contains the language of basic
arithmetic if L has a term which denotes zero and function symbols for the
successor, addition and multiplication functions debned over numbers B these
can be either built-in as primitives or introduced by debnition B and has the
usual connectives, the identity predicate, and can express quantibers running
over the natural numbers.

An example might be the language of set theory, in which we can define zero,
successor, addition and multiplication in standard ways, and express restricted
guantifiers running over just zero and its successors.

(OK, you might worry whether the natural number system referred to in set
theory is the genuine article or just a structurally equivalent surrogate. But then
what is ‘the genuine article’? We are not going to tangle with that messy issue,
as we have quite enough other things to worry about! When we talk of a theory
guantifying over numbers, then, take it to be quantifying over numbers or over
whatever surrogates we can take to play the role of natural numbers. Nothing
relevant to our project hangs on the dilerence.)

2.2 Two theorems distinguished

In his 1931 paper, Godel proves (or rather more accurately, gives us most of the
materials to prove) the following:

10

Two theorems distinguished

Theorem 1. Supposel’ is a formal axiomatized theory whose language contains
the language of basic arithmetic. Then, ifT" is sound, there will be a true sen-
tence G of basic arithmetic such that7 ! Gy and T'! -Gy, so T' is negation
incomplete.

We will outline a pivotal part of Godel’s proof (in a very gappy way!) in the next
chapter.

However this version of an incompleteness theorem isnOtwhat is most com-
monly referred to as the First Theorem, nor is it the result that Godel fore-
grounds in his 1931 paper. For note, Theorem 1 tells us what follows from a
semantic assumption, namely the assumption that 7' is sound. And soundness
is defined in terms of truth.

Now, post-Tarski, most of us aren’t particularly scared of the notion of the
truth. To be sure, there are issues about how best to treat the notion formally,
to preserve as many as possible of our pre-formal intuitions while e.g. blocking
the Liar Paradox. But most of us think that we don’t have to regard the relevant
notion of a sound theory as metaphysically loaded in an obscure and worrying
way. However, Godel was writing at a time when, for various reasons (think
logical positivism!), the very idea of truth-in-mathematics was under some sus-
picion. It was therefore extremely important to Godel that he could show that
you don’t need to deploy any semantic notions to get an incompleteness result.
So he demonstrates (a version of) the following:

Theorem 2. Supposel’ is a formal axiomatized theory whose language contains
the language of basic arithmetic. Then, ifT" is consistent and can prove a certain
modest amount of arithmetic (and has a certain additional property that any
sensible formalized arithmetic will share), there will be a sentenc&r of basic
arithmetic such that 7! Gr and T'! -G, so T is negation incomplete.

Being consistent (in the relevant sense) is a syntactic property; being able to
formally prove enough arithmetic is another syntactic property; and the myste-
rious additional property which I haven’t explained is syntactically defined too.
So this version of the incompleteness theorem only makes syntactic assumptions.

Of course, we’ll need to be a lot more explicit in due course; but this indicates
the general character of Godel’s central result. Our ‘can prove a certain modest
amount of arithmetic’ gestures at what it takes for a theory to be su"ciently
related to Principia’s for the theorem to apply (recall the title of the 1931
paper). But I'll not pause to spell out just how much arithmetic that is, though
we’ll eventually find that it is stunningly little. Nor will I pause to explain that
‘additional property’ condition. We’ll meet it in due course, but also eventually
see how — by a cunning trick discovered by J. Barkley Rosser in 1936 — we can
drop that condition again.

For now, then, the first take-away message of this chapter is that the in-
completeness theorem does come in two flavours. There’s a version making a
semantic assumption (the relevant theory T' needs to expressively rich enough

11

2 The First Theorem, two versions

and sound), and there’s a version making only a syntactic assumption (about
what 7" can derive from its axioms). It is important to keep this firmly in mind.

2.3 Incompleteness and incompletability

Let’s concentrate on the first, semantic, version of the First Theorem.

Suppose T is a sound theory which contains the language of basic arithmetic.
Then, the claim is, we can find a true Gy such thatT'! Grand T ! —Gp. Let’s be
really clear: this doesn’t, repeat doesnQtsay that G is ‘absolutely unprovable’,
whatever that could possibly mean. It just says that Gr and its negation are
unprovable-in-T.

Ok, you might well ask, why don’t we just ‘repair the gap’ in 7" by adding
the true sentence G as a new axiom? Well, consider the theory U = T + Gp
(to use an obvious notation). Then (i) U is still sound, since the old T-axioms
are true, the added new axiom is true, and its logic is still truth-preserving. (ii)
U is still a properly formalized theory, since adding a single specified axiom to
T doesn’t make it undecidable what is an axiom of the augmented theory. (iii)
U’s language still contains the language of basic arithmetic. So Theorem 1 still
applies, and we can find a sentence Gy such that U'! Gy and U ! —Gy. And
since U is stronger than T we have, a fortiori, 7! Gy and T'! —Gy. In other
words, ‘repairing the gap’ in 7' by adding G as a new axiom leaves some other
sentences that were undecidable in T" still undecidable in the augmented theory.

And so it goes. Keep throwing more and more additional true axioms at T’
and our theory still remains negation-incomplete, unless it stops being electively
axiomatized. So here’s the second important take-away message of the chapter:
when the conditions for Theorem 1 apply, then the theory T will not just be
incomplete but in a good sense 7" will be incompletable! (We’ll see in due course
that just the same holds when the conditions for Theorem 2 apply.)

So we should perhaps really talk of the First Incompletability Theorem.

2.4 The completeness and incompleteness theorems

A reality check. We’ve already made the distinction we need in §1.3, and we
illustrated it then with a toy example. But experience suggests that it will do
no harm at all to repeat the point!

A semantic completeness theorem of the kind you are no doubt familiar with
from elementary logic is about the relation between semantic and syntactic con-
sequence relations. For example, you will know about this completeness result:

If T is a theory cast in a first-order language with a standard first-
order deductive apparatus, then for any ¢, if T'! ¢ then T+ .

ISuppose we take a language of basic arithmetic, and take all the true sentences of the
language as axioms. Then yes, by brute force, we get a negation-complete theory! What
Theorem 1 will tell us is that this theory can’t be an effectively axiomatized theory —
meaning that we can’t effectively decide what’s a true sentence of the language.

12

The completeness and incompleteness theorems

(That’s Godel’s completeness theorem.) But it doesn’t follow from 7’s having
a complete logic like this that 7" is a negation-complete theory. For example,
if T is a theory of arithmetic with a standard first-order deductive apparatus
it certainly has a semantically complete logic; but it can easily be a negation-
incomplete theory. Just miss out axioms for addition (say), and there can be
lots of wls ¢ (those involving addition) such that neither 7'+ ¢ nor T'F —!

Of course, that’s a very boring way of being incomplete. And, as we said
before, we might reasonably have expected that incompleteness can always be
repaired by judiciously adding in the needed axioms. The First Incompleteness
Theorem tells us, however, that try as we might, every theory of arithmetic
satisfying certain desirable conditions (even if it has a semantically complete
logic) must remain negation incomplete as a theory.

13

3 Outlining a Godelian proof

3.1 A notational convention

Before continuing, we should highlight a very useful notational convention that
we have already been using and which we will continue to use throughout these
notes:

1. Expressions in informal mathematics will be in ordinary serif font, with
variables, function letters etc. in italics. Examples: 2+1 = 3, n+m = m+n,
S(x+y) =x+ Sy.

2. Particular expressions from formal systems — and abbreviations of them
— will be in sans serif type. Examples: SSS0, SO # 0, SSO + SO = SSS0,
VxVy(x +y =y + x).

3. Greek letters, like ‘#’ and ‘ ’, are schematic variables in the metalanguage,
which we can use e.g. in generalizing about w!s of our formal systems.

The same convention is used in IGT2, and versions of it are quite common
elsewhere too. There’s a lot of to-and-fro in this book between claims of infor-
mal mathematics, samples of formal expressions and formal proofs, and general
claims about formal proofs. It is essential to be clear which is which, and our
notational convention should help considerably.

3.2 Formally expressing numerical properties, relations and functions

In the next few sections, we are going to prepare the ground for an outline sketch
of how Godel proved (a version of) Theorem 1.

We start with a couple more definitions. Recall, we said that the standard
numerals of a language of basic arithmetic are the expressions ‘0’, ‘S0’, ‘SS0’,
‘SSS0’, Let’s now introduce a handy notational convention:

Defn. 12. We will use @O to abbreviate the numeral denoting the number

So ‘n” will consist of n occurrences of ‘S’ followed by ‘0’.

Now assume we are dealing with a language L which has standard numerals
(and for the moment we’ll also assume L has the usual apparatus of variables).
Then we will say:

14

Godel numbers

Defn. 13. The open w! ¢(x) of the languagel expresses the numerical property
P i' ¢(n) is true on interpretation just when n has property P. Similarly, the
formal w! (x,y) expresses the numerical two-place relatiorR i! (m,n) is
true just when m has relation R to n. And the formal w! x(x,y) expresses the
numerical one-argument function f it x(m,n) is true just when f(m) = n.

Hopefully, this definition should seem entirely natural.® For example, the w!
Jyx = (y +y) expresses the property of being an even number. Why? Because
dyn = (y +y) is true just in case n is the sum of some natural number with itself,
i.e. is twice some number. Note, as we have defined it, for a w! to express the
property of being an even number is just for it to be true of the even numbers.
More generally: expressing is just a matter of having the right extension.

Though we won’t need it, the generalization of our definition to cover express-
ing many-place relations and many-argument functions is obvious enough.

3.3 Godel numbers

And now for a key new idea. These days, we are entirely familiar with the fact
that all kinds of data can be coded up using numbers: the idea was perhaps not
in such everyday currency in 1931. But even then, the following sort of definition
should have looked quite unproblematic:

Defn. 14. A Goddel-numbering scheme for a formal theory T is some elective
way of coding expressions of” (and sequences of expressions @f) as natural
numbers. There is an algorithm for sending an expression (or sequence of ex-
pressions) to a number; and an algorithm for undoing the coding, sending a code
number back to the expression (sequence of expressions) it codes. Relative to a
choice of scheme, the code number for an expression (or a sequence of expres-
sions) is its unique Godel-number.

For a toy example, suppose the expressions of our theory’s language L are built
up from just seven basic symbols. Associate those with the digits 1 to 7, and
associate the comma we might use to separate expressions in a sequence of
expressions with the digit 8. Then a single L-expression, and also a sequence of
L-expressions separated by commas, can be directly mapped to a sequence of
digits, which can then be read as a single numeral in standard decimal notation,
denoting a natural number. That mapping is the simplest of algorithms. And
in reverse, undoing the coding is equally mechanical (though if the string of
digits expressing some number contains ‘9’ or ‘0’, the algorithm won’t output
any result when we try to decode it).

LIf you’ve been rather well brought up, you would probably prefer to use the symbolism
‘o(€)’, using a place-holding metavariable to mark a gap, rather than use ‘¢(x)’
are recruiting the free variable ‘x’ for place-holding duties. But we will stick to the more
common mathematical usage (even though Fregeans will sigh sadly).

‘p(R)’ indicates, of course, the result of replacing the variable ‘x’ in ‘p(x)’ by the standard
numeral for n. But you knew that!

where we

15

3 Outlining a Godelian proof

Which scheme of Gddel-numbering we adopt in practice will depend on consid-
erations of ease of manipulation. In theory it won’t matter: any elective scheme
is as good as any other (as we will be able to electively map codes for w!s or
sequences of w!s produced by one scheme to codes produced by another, simply
by decoding according to the first scheme and re-coding using the second).

3.4 Three new numerical properties/relations

Defn. 15. Take an electively axiomatized formal theoryT’, and Px on a scheme
for Gedel-numbering expressions and sequences of expressions fraids lan-
guage. Then, relative to that numbering scheme,

W! (n) i! nis the Gedel number of ar-w!.

Sent(n) i' n is the Gedel number of ar'-sentence.

Prf (m,n) i! m is the Gedel number of a'-proof of the T-sentence
with code numbern.

Now, true enough, these aren’t the kind of numerical properties/relations you
are familiar with. But they are perfectly well-defined. Indeed, we can say more:

Theorem 3. SupposeT is an electively axiomatized formal theory, and sup-
pose we are given a Gedel-numbering scheme. Then the corresponding proper-
ties/relations W!, Sent, Prf are electively decidable.

Proof. Take W! . The number n has this property if and only if (i) n decodes
into a string of T-symbols (an elective process a computer could carry out), and
(i) that string of T-symbols is a w! (which, since T has an electively formalized
language by assumption, again a computer could decide). In short, it is electively
decidable whether W! (n).

The case of Sentis similar. And as for Prf , since T is an electively axiomatized
theory it is electively decidable whether a supposed proof-array of the theory is
the genuine article proving its purported conclusion. So it is electively decidable
whether the array, if any, which gets the code number m is indeed a T-proof of
the conclusion coded by n. That is to say, it is electively decidable whether
Prf (m,n). a

3.5 T can express Prf

So far, so straightforward. Now things get more exciting. In this section and the
next, we state two key results, which will prepare the ground for our Godelian
proof of Theorem 1. For the moment, we will have to state the results without
detailed proof: later, we will see what it takes to prove (close variants) of them.
But for now, we just want to explain what the two results claim. The first is as
follows:

16

Defining a Godel sentence Gp

Theorem 4. Supposel is an electively axiomatized theory which includes the
language of basic arithmetic, and suppose we have bxed on a Gedel-numbering
scheme. ThenT can express the corresponding numerical property Prf using
some arithmetical w! Prf(x, y).

This is not supposed to be obvious! It takes quite a bit of elort to show how to
build — just out of the materials of the language of basic arithmetic — a formal
T-w! we’ll abbreviate Prf(x,y) that expresses the property Prf , so Prf(m,n) is
true exactly when Prf (m, n), i.e. when m is the code number of a T-proof of the
w! with number n.

How do we show this surprising claim? As | said, we are not going to spell
this out right now. But, to a first approximation, we can rely on the fact that
the language of basic arithmetic turns out to be really good at expressing decid-
able numerical properties and relations, and we’ve just seen that the numerical
relation Prf is decidable because T is a formalized theory.

Or rather, to a better approximation, we rely on the fact that basic arith-
metic is very good at expressing so-called primitive recursive relations and for
any sensible theories Prf (/m,n) is primitive recursive. The idea of a primitive
recursive relation is a simple but technically defined notion that covers a large
class of intuitively electively decidable relations. So, for our purposes, we can
trade in the informal notion of a decidable relation for the crisply defined notion
of a primitive recursive relation. More about this later (in Chapter 10).

3.6 Defining a Godel sentence G

It’s useful to start adding subscripts to emphasize which theory we are dealing
with. With a predicate Prf(x,y) available in the theory T to express the relation
Prf 7, we can now add a further neat definition:

Defn. 16. Put Provr(y) =qe¢ IXPrfr(x,y) (Where the quantiber runs over all the
numbers in the domain). ThenProvr(R) says that some number Gedel-numbers
a T-proof of the w! with Gedel-number n, i.e. the w! with code number n is a
T-theorem. SoProvr(x) is naturally called a provability predicate.

And now comes another key result we need for building towards the First
Theorem. Still working with the same theory 7" and Godel-numbering scheme,

Theorem 5. We can construct a Godel sentence Gr in the language of basic
arithmetic with the following property: Gr is true if and only if —Provr(g) is
true, where g is the code number ofGr.

This construction involves a clever but surprisingly easy trick: we won’t spell it
out now, so again we’ll delay the proof of this theorem. For the moment, just
note what our theorem implies: by construction, Gr is true on interpretation i!
=Provr(g) is true, i.e. i! the w! with Godel number g is not a theorem, i.e. i!
Gr is not a theorem. In short, G is true if and only if it isnOt a theorem

17

3 Outlining a Godelian proof

Stretching a point, it is rather as if Gr ‘says’ | am unprovable in 7. (But that
is stretching a point: strictly speaking, G doesn’t really say that — Gr is just
a fancy sentence in the language of basic arithmetic, so it is in fact just about
numbers and doesn’t refer any w!. More about this later, in §11.3.) Still, with
that point in mind, you’ll probably immediately spot that we can now prove ...

3.7 Incompleteness!

Theorem 1. SupposeTl’ is a formal axiomatized theory whose language contains
the language of basic arithmetic. Then, ifT" is sound, there will be a true sen-
tence G of basic arithmetic such that7T'! Gy and T'! —~Gp, so T is negation
incomplete.

Proof. Take Gr to be the Godel sentence introduced in Theorem 5. Suppose
T+ Gp. Then G would be a theorem, and hence G — which is true i! it is not
provable — would be false. So 7" would have a false theorem and hence 7" would
not be sound, contrary to hypothesis. So T'! Gr.

Hence G — which is true i! it is not provable - is true after all. So -G is false
and T, being sound, can’t prove that either. Therefore we also have T'! —Gr.

So, in sum, T can’t formally decide Gr one way or the other. T is negation
incomplete. O

This proof is very straightforward. So the devil is in the details of the proofs
of the preliminary results we labelled as Theorems 4 and 5. As promised, later
chapters will dig down to the relevant details.

For future reference, Godel’s proof of the syntactic version of the incomplete-
ness theorem, i.e. Theorem 2, uses the same construction of a Gddel sentence,
but this time we need to trade in the semantic assumption that 7" is sound for the
syntactic assumption that 7' is consistent and can prove some basic arithmetical
truths (and we require 7' to have that currently mysterious ‘additional desirable
[syntactic] property’). So we will need syntactic analogues of Theorems 4 and 5.
Again more devilish detail. Again more about this in due course.

3.8 Godel and the Liar

Of course, you might well think that there is something a bit worrying about
our sketch in the last section. For basically, I’'m saying we can construct an
arithmetic sentence G in T' that, via the Godel number coding, is true if and
only if to ‘G’ is not provable in 7', and then such a sentence can neither be
proved nor refuted in a sound 7'. But shouldn’t we be suspicious about this idea?
After all, we know we fall into paradox if we try to construct a Liar sentence L
which holds if and only if ‘L’ is not true. So why does the self-reference in the
Liar sentence lead to paradox while the self-reference in Godel’s proof give us a
theorem?

18

Godel and the Liar

Which is a very good question indeed. You've exactly the right instincts in
raising it. The coming chapters, however, aim to give you a convincing answer
to that very question!

But we are touching here on the deep roots of the incompleteness theorem.
Suppose 7' is an electively axiomatized theory which can express enough arith-
metic. Then, as we’ll confirm later, 7' can express the property of being a prov-
able T-sentence. But, as we will also confirm, T can’t express the property of
being a true T-sentence (if it could, then 7" would be beset by the Liar para-
dox). So the property of being a true T-sentence and the property of being a
provable T-sentence must be dilerent properties. Hence either there are true-
but-unprovable-in-T" sentences or there are false-but-provable-in-T' sentences. As-
suming that 7" is sound rules out the second option. So the truths of 7"s language
outstrip T’s theorems. Therefore 7' can’t be negation complete. That might be
said to be the Master Argument for incompleteness: see §14.4.

19

4 Undecidability and incompleteness

In Chapter 1, we introduced the very idea of a negation-incomplete, electively
axiomatized, formal theory T

We noted that if we are aiming to construct a theory of basic arithmetic, we
would ideally like the theory to be able to prove all the truths expressible in the
language of basic arithmetic, and hence to be negation complete (at least as far as
statements of basic arithmetic are concerned). But Godel’s First Incompleteness
Theorem tells us that that’s impossible: roughly, a nice enough theory T' will
always be negation incomplete for basic arithmetic.

Now, as we noted in Chapter 2, the Theorem comes in two flavours, depending
on whether we cash out the idea of being ‘nice enough’ in terms of (i) the semantic
idea of 7s being a sound theory which uses enough of the language of arithmetic
or (ii) the idea of 7"s being a consistent theory which proves enough arithmetic
Then we saw in Chapter 3 that Godel’s own proofs, of either flavour, go via the
idea of numerically coding up inside arithmetic itself syntactic facts about what
can be proved in T, and then constructing an arithmetical sentence that — via
the coding — is true if and only if it is not provable (it is rather as if it says | am
not provable inT).

We ended by noting that, at least at the level of arm-waving description of
Chapter 3, the Godelian construction might look a bit worrying. After all, we
all know that self-reference is dangerous — think Liar Paradox! So is Godel’s
construction entirely legitimate?

It certainly is, as should become quite clear over the coming chapters. But
I think it might well go a little way towards calming the worry that some ille-
gitimate trick is being pulled, and it is certainly of intrinsic interest, if we first
give a somewhat dilerent sort of proof of incompleteness, one that doesn’t go
via any explicitly self-referential construction. This proof will, however, intro-
duce the idea of a diagonalization argument And as we will see later, it is in
fact ‘diagonalization’ rather than self-reference which is really the key to Godel’s
own proof.

So now read on ...

4.1 Negation completeness and decidability

Let’s start with another definition:

20

Negation completeness and decidability

Defn. 17. A theory T is decidable i! the property of being a theorem of T is
an electively decidable property D i.e. i! there is a mechanical procedure for
determining, for any given sentencep of TOs language, whethér I ¢.

(Terminology check: a theory T formally decidesa sentence ¢ i! either T F ¢
or T+ —p; a theory T is decidablei! for any ¢ we can electively determine
whether T+ ¢. Two dilerent notions then with similar terminology: in practice,
though, you shouldn’t get confused!')

We can now easily show:

Theorem 6. Any consistent, negation-complete, electively axiomatized formal
theory is decidable.

Proof For convenience, we can assume our theory 7"s proof system is a Frege/
Hilbert axiomatic logic, where proofs are just linear sequences of w!s (but it
should be pretty obvious how to generalize the argument to other kinds of proof
systems, where proof arrays are arranged e.g. as trees of some kind).

Recall, we stipulated (in Defns. 2, 3) that if 7" is a properly formalized the-
ory, its formalized language L has a finite humber of basic symbols. Now, we
can evidently put those basic symbols in some kind of ‘alphabetical order’, and
then start mechanically listing o! all the possible strings of symbols in order —
e.g. the one-symbol strings, followed by the finite number of two-symbol strings
in ‘dictionary’ order, followed by the finite number of three-symbol strings in
‘dictionary’ order, followed by the four-symbol strings, etc., etc.

Now, as we go along, generating sequences of symbols, it will be a mechanical
matter to decide whether a given string is in fact a sequence of w!s. And if it is, it
will be a mechanical matter to decide whether the sequence of w!s is a T-proof,
i.e. to check whether each w! is either an axiom or follows from earlier w!s in
the sequence by one of 17s rules of inference. (That’s all electively decidable in
a properly formalized theory, by Defns. 2, 3). If the sequence is indeed a kosher
well-constructed proof, finishing with a sentence, then list this last w! ¢ as a
T-theorem.

We can in this way start mechanically generating a list that will eventually
contain any T-theorem (since any T-theorem is the last sentence in a proof).

And that enables us to decide, of an arbitrary sentence ¢ of our consistent,
negation-complete 7', whether it is indeed a T-theorem. Just start listing all the
T-theorems. Since T is negation complete, eventually either ¢ or —p turns up
(and then you can stop!). If ¢ turns up, declare it to be a theorem. If = turns
up, then since 7' is consistent, we can declare that ¢ is not a theorem.

Hence, there is a dumbly mechanical ‘wait and see’ procedure for deciding
whether ¢ is a T-theorem, a procedure which (given our assumptions about 7)
is guaranteed to deliver a verdict in a finite number of steps. O

ITo fix ideas, note that a theory can be decidable without deciding every wiff. For example,
the toy propositional theory T of ©1.3 is decidable (as is familiar, because propositional
logic is complete, a truth-table test will determine whether T'! ¢ for any given wff ¢ of T’s
language). In particular, we can see that T'! q and T'! Aq. Therefore T doesn’t decide q,
so T doesn’t decide every wif.

21

4 Undecidability and incompleteness

We are, of course, relying here on a very relaxed notion of elective decidability-
in-principle, where we aren’t working under any practical time constraints or
constraints on available memory etc. (so note, ‘elective’ doesn’t mean ‘practi-
cally e"cacious’ or ‘e"cient’!). We might have to twiddle our thumbs for an
immense time before one of ¢ or = turns up. Still, our ‘wait and see’ method is
guaranteed in this case to produce a result in finite time, in an entirely mechan-
ical way — so this counts as an electively computable procedure in our o"cial
generous sense (see the comments again on Defn. 1, or the further explanation
in IGT2, §3.1).

4.2 Capturing numerical properties in a theory

Here’s an equivalent way of rewriting part of an earlier definition:

Defn. 13. A numerical property P is expressed by the open w! ¢(x) with one
free variable in a languagel which contains the language of basic arithmetic i!,
for every n,

i. if n has the property P, then ¢(n) is true,

ii. if n does not have the propertyP, then —p(n) is true.

(Recall, n indicates L’s standard numeral for n.) And now we want a new com-
panion definition:

Defn. 18. The theory T' captures the numerical property P by the open w! ¢ (x)
il, for any n,

i. if n has the property P, then T'+ (),

ii. if n does not have the propertyP, then 7' —p(n).

Note the contrast: what a theory can expressdepends on the richness of its
language; what a theory can capture — mnemonic: case-by-case prove — depends
on the richness of its axioms and rules of inferences. (To be honest, ‘represents’ is
much more commonly used than my ‘captures’, but I'll stick here to the slightly
idiosyncratic but memorable jargon adopted in IGT2.)

Just as a theory can express two-place relations (say) as well as monadic
properties, a theory can capture relations as well as properties. So (for future
reference) we expand our definition in the obvious way like this:

Defn 18. (continued) The theory T' captures the two-place numerical relation
R by the open w! o(x,y) i, for any m,n,

i. if m has the relation R to n, then 7' ¢(m, n),

ii. if m does not have the relationR to n, then T'+ —p(m, n).

But for the moment, let’s concentrate on the case of capturing properties.

Ideally, of course, we’ll want any theory that aims to deal with arithmetic not
just to express but to capture lots of numerical properties, i.e. to prove which
particular numbers have or lack these properties. But what particular sort of
properties do we want to capture?

22

Sufficiently strong theories are undecidable

Well, suppose that P is some electively decidable property of numbers, i.e. one
for which there is a mechanical procedure for deciding, given a natural number n,
whether n has property P or not (see Defn. 1 again). So we can, in principle, run
the procedure to decide whether n has this property P. Now, when we construct
a formal theory of the arithmetic of the natural numbers, we will surely want
deductions inside our theory to be able to track, case by case, any mechanical
calculation that we can already perform informally. We don’t want going formal
to diminish our ability to determine whether n has a property P. Formalization
aims at regimenting what we can in principle already do: it isn’t supposed to
hobble our elorts. So while we might have some passing interest in more limited
theories, we will ideally aim for a formal theory T" which at least (a) is able to
frame some open w! ©(x) which expresses the decidable property P, and (b) is
such that if n has property P, T+ ¢(n), and if n does not have property P,
T —p(n). In short, we will want T" to capture P in the sense of our definition.

The suggestion therefore is that, if P is any electively decidable property
of numbers, we ideally want a competent theory of arithmetic 7" to be able to
capture P. Which motivates the following definition:

Defn. 19. A formal theory T is su“ciently strong i! it captures all decidable
numerical properties.

(It would be equally natural, of course, to require the theory also capture all
decidable relations and all computable functions — but for present purposes we
don’t need to worry about that.)

In sum: it seems a reasonable and desirable condition on an ideal formal theory
of the arithmetic of the natural numbers that it be su"ciently strong — when we
can (or at least, given world enough and time, could) decide whether a particular
number has a certain property, the theory can do it.

4.3 Sufficiently strong theories are undecidable

We now prove a lovely theorem (take it slowly, savour it!):

Theorem 7. NoO consistent, electively axiomatized and su“ciently strong for-
mal theory is decidable.

Proof We suppose T is a consistent and su'ciently strong theory yet also
decidable, and derive a contradiction.

If T is su"ciently strong, it must have a supply of open w!s (for expressing
numerical properties). And by Defn 2, it must in fact be decidable what strings
of symbols are T-w!s with the free variable * x’. And we can use the dodge in
the proof of Theorem 6 to start mechanically listing such w!s

©o(x), P1(x), p2(x), @3(x), - - ..

For we can just churn out all the strings of symbols of 7”s language ‘in alpha-
betical order’, and then mechanically select out the w!s with free variable * x’.

23

4 Undecidability and incompleteness

So now we can introduce the following definition:
n has the property D if and only if T+ —¢,, (0).

That’s a perfectly coherent stipulation. Of course, property D isn’t presented in
the familiar way in which we ordinarily present properties of numbers: but our
definition tells us what has to be the case for n to have the property D, and
that’s all we will need.

Now for the key observation: our supposition that 7 is a decidable theory
entails that D is an electively decidable property of numbers.

Why? Well, given any number n, it will be a mechanical matter to start listing
o! the open w!s until we get to the n-th one, ¢,(x). Then it is a mechanical
matter to form the numeral n, substitute it for the variable, and then prefix a
negation sign. Now we just apply the supposed mechanical procedure for deciding
whether a sentence is a T-theorem to test whether the resulting w! -, (n) is
a theorem. So, on our current assumptions, there is an algorithm for deciding
whether n has the property D.

Since, by hypothesis, the theory T is su“ciently strong, it can capture all
decidable numerical properties. So it follows, in particular, that D is capturable
by some open w!. This w! must of course eventually occur somewhere in our
list of the ¢(x). Let’s suppose the d-th w! does the trick: that is to say, property
D is captured by pg(x).

It is now entirely routine to get out a contradiction. For, just by the definition
of capturing, to say that p,;(x) captures D means that for any n,

if n has the property D, T F pq4(n),
if n doesn’t have the property D, T + —p4(n).

So taking in particular the case n = d, we have

i. if d has the property D, T F ¢4(d),
ii. if d doesn’t have the property D, T + —p4(d).

But note what our initial definition of the property D above implies for the
particular case n = d:

iii. d has the property D if and only if T'F —p,4(d).

From (ii) and (iii), it follows that whether d has property D or not, the w!
—pq(d) is a theorem either way. So by (iii) again, d does have property D, hence
by (i) the w! ,4(d) must be a theorem too. So a w! and its negation are both
theorems of T'. Therefore T is inconsistent, contradicting our initial assumption
that 7' is consistent.

In sum, the supposition that 7" is a consistent and su"ciently strong axiom-
atized formal theory of arithmetic and is decidable leads to contradiction. O

So, if T' is properly formalized, consistent and can prove enough arithmetic, then
there is no way of mechanically determining what’s a T-theorem and what isn’t.

24

Diagonalization

4.4 Diagonalization

Let’s highlight the key construction here. In defining the property D, for each
n, we take the n’th w! ¢,,(x), and plug in the standard numeral for the index n
(before taking the negation of the result). This sort of thing is called diagonal-
ization. Why?

Well, just imagine the square array you get by writing ¢ (0), ©o(1), ©o(2),
etc. in the first row, ¢1(0), ©1(1), ©1(2), etc. in the next row, ¢(0), ¢2(1), ¢¥2(2)
etc. in the next row, and so on. Then the w!s of the form ¢, (1), including ¢4(d),
lie down the diagonal through the array.

WEe’ll be meeting other instances of this sort of construction. And it is a
diagonalization of this kind that is really at the heart of Godel’s incompleteness
proof.?

4.5 Incompleteness again!

So we have now shown:

Theorem 6. Any consistent, negation-complete, electively axiomatized formal
theory is decidable.

Theorem 7. No consistent, electively axiomatized and su“ciently strong for-
mal theory is decidable.

We can therefore deduce:

Theorem 8. A consistent, electively axiomatized, su“ciently strong, formal
theory cannot be negation complete.

Wonderful! A seemingly remarkable theorem, proved remarkably quickly (this
time without having to simply assume unproved lemmas along the way).3

Note, though, that — unlike Godel’s own proof strategy — Theorem 8 doesn’t
actually yield a specific undecidable sentence for a given theory 7.

And more importantly, the interest of the theorem depends on the still-
informal notion of a su"ciently strong theory being in good order. Theorem 2
claimed incompleteness on the assumption that 7' can prove a certain as-yet-
unspecified amount of arithmetic. Our new Theorem 8 claims incompleteness
on the more specific basis that, for any decidable property of numbers, T can
case-by-case determine which numbers have the property. Now, | wouldn’t have
written up the argument in this chapter if this notion of 7”s being ‘suciently
strong’ were intrinsically problematic. Still, we are left with a project here: we
will want to give a sharper account of what makes for an electively decidable

2For the grandfather of all diagonalization arguments, due to Georg Cantor, see
http://en.wikipedia.org/wiki/Cantor’s_diagonal_argument (as well as IGT2 , 82.5).

3] learnt the argument in this chapter as a student — so decades ago! — from lectures by
Timothy Smiley.

25

http://en.wikipedia.org/wiki/Cantor's_diagonal_argument

4 Undecidability and incompleteness

property in order to (i) clarify the notion of sucient strength, while (ii) still
making it plausible that we want su“ciently strong theories in this clarified
sense.

That can indeed be done, and it turns out that a surprisingly weak theory
called Robinson Arithmetic which we meet in the next chapter is already su"-
ciently strong. However, supplying and defending the needed sharp account of
the notion of elective decidability in order to pin down the notion of su“cient
strength takes some elort! And it arguably takes at least as much elort com-
pared with the task of filling in the needed details for proving incompleteness
by Godel’s original method as partially sketched in Chapter 3. So over the next
chapters, we are going to revert to exploring something closer to Gddel’s route
to the incompleteness theorems.

Still, our argument in this present chapter is illuminating and well worth
knowing about.

26

5 Two weak arithmetics

Theorem 8 tells us that if a consistent, electively axiomatized, theory is ‘suf-
ficiently strong’, then it must be negation incomplete. And this isn’t a wildly
extravagant requirement, being su“cient strong: as we announced in §4.5, even
the very weak arithmetic called Robinson Arithmetic already meets the condi-
tion (in which case, stronger arithmetics must also meet the condition). But we
didn’t say anything at all about what this weak theory looks like! In fact, we
haven’t looked at any detailed theory of arithmetic yet. It is obviously high time
that we stop operating at the level of abstraction of earlier chapters; we need to
start getting our hands dirty.

This chapter, then, introduces a couple of weak arithmetics (‘arithmetics’, that
is to say, in the sense of ‘theories of arithmetic’). We first meet Baby Arithmetic
(as a warm-up) and then the important Robinson Arithmetic. You can by all
means skip fairly lightly over a few of the more boring proof details here; but
you do need to get a sense of how these two simple formal theories work, in
preparation for the next chapter where we introduce the canonical first-order
theory of arithmetic, Peano Arithmetic.

5.1 Thelanguage Lp

First we describe the language of baby arithmetic L. Its symbols are

0 proper name denoting zero
S,+, x function symbols for, respectively, the successor,
addition and multiplication functions
() parentheses for use with +, x
== logical vocabulary, just the identity predicate and negation.

We write the one-place successor function symbol in ‘prefix’ position, so we
can form the standard numerals 0, S0, SS0, SSSO, ... (see §1.5). Recall, we use ‘A’
to represent the standard numeral SS...S0 with »n occurrences of ‘S’. Thus ‘3’
is short for ‘SSS0’ which denotes the number 3.

We will however write ‘+’ and ‘x’ as ‘infix’ function symbols in the usual way
— i.e. we write (S0 + SS0) rather than prefix the function sign as in +S0SS0.
So we need the parentheses for scoping the function signs, to disambiguate

27

5 Two weak arithmetics

S0 + SS0 x SSSO, e.g. as (S0 + (SS0 x SSS0)). For readability, though, we will
follow common practice and usually drop outermost pairs of brackets.

From these symbols, we can construct the terms of Lg. A term is a referring
expression built up from occurrences of ‘0’ and applications of the function ex-
pressions ‘S’, ‘+’, ‘x’. So, examples are 0, SSS0, SO + SS0, (S0 + SS0) x SSSO,
SSS0 + ((S0 + SS0) x SSS0), and so on.

We will use o and 7 as metalinguistic placeholders for terms of Lg. The value
of a term 7 is the number it denotes when standardly interpreted: the values of
our example terms are respectively 0, 3, 3, 9 and 12.

The sole built-in predicate of the language Lp is the logical identity sign.
Since Lp lacks other non-logical predicates, the only way of forming atomic w!s
in the language is therefore by taking two terms and putting the identity sign
between them. In other words, the atomic w!s of Lp are equations relating
terms denoting particular numbers. So, for example, SO + SS0 = SSSO0 is a true
atomic w! — which we can abbreviate, as 1+ 2 = 3. And S0 + SS0 = SS0 x SS0
is a false atomic w! — which we can abbreviate, as 1+2 =2 x 2.

We now add a negation sign to the language L g so that we can also explicitly
assert that various equations do not hold. For example, =S50 + SS0O = SS0 x SS0
is true. Though, for readability’s sake, we will prefer to abbreviate that last w!
as S0 + SS0 # SS0 x SS0.1

5.2 The axioms and logic of Baby Arithmetic

The theory BA couched in this language Lz will come equipped with a classi-
cal deductive system to deal with negation and identity. You can choose your
favourite system. In illustrations, we’ll set out proofs in a Fitch-like natural de-
duction format (because it is likely to be familiar, and is easy to follow even if
it isn’t familiar): but absolutely nothing hangs on the choice.

Next, we want non-logical axioms governing the successor function. We want
to capture the idea that, if we start from zero and repeatedly apply the successor
function, we keep on getting further numbers — i.e. dilerent numbers have dif-
ferent successors: contraposing, for any m,n, if Sm = Sn then m = n. Further,
zero isn’t a successor, i.e. we never cycle back to zero: for any n, 0 # Sn.

However, there are no quantifiers in Lg. So we can’t directly express those
general facts about the successor function inside the object language L. Rather,
we have to employ schemas(i.e. general templates) and use the generalizing
apparatus in our English metalanguage to say: any sentence that you get from
one of the following schemas by substituting standard numerals for the place-
holders @D, Q is an axiom

1Fine print: we can allow an equation to be preceded by any number of negation signs, with
the result counting as a (non-atomic) wif. But we are going to give Lp a classical logic,
so in fact a pair of adjacent negation signs just cancel each other out. Hence we need only
worry about atomic formulae and their negations. It wouldn’t make a significant difference
if we also gave Lp the other connectives. But it is crucial that Lp lacks the apparatus of
quantification.

28

The axioms and logic of Baby Arithmetic

Schema 1. 0 # SC
Schema 2. S(=S¢(— (=¢

NB: These schemas aren’t axioms of BA; the Greek metavariables don’t belong to
the language L. It s, to repeat, instances of the schemas got by systematically
replacing the placeholders with numerals — same placeholder, same replacement
— which are the axioms.?2 We’ll see some examples in a moment.

Next, we want non-logical axioms for addition. This time we want to capture
the idea that adding zero to a number makes no dilerence: for any m, m+0 = m.
And adding a non-zero number Sn (i.e. n+ 1) to m is governed by the following
rule: for any m,n, m + Sn = S(m +n) —i.e. m+ (n+1) = (m +n) + 1. Those
two principles together tell us how to add zero to a given number m; and then
adding one is defined as the successor of the result of adding zero; and then
adding two is defined as the successor of the result of adding one; and so on up
— thus defining adding » for any particular natural number n.

Note that because of Lg’s lack of quantifiers, we again can’t express all that
directly inside Lp itself. We again have to resort to schemas, and say that any-
thing you get by substituting standard numerals for placeholders in one of the
following schemas is an axiom - for short, every numerical instance of these
schemas is an axiom

Schema 3. (+0=¢
Schema 4. (+S¢=S((+¢)

We can similarly pin down the multiplication function by requiring that every
numeral instance of these schemas too is an axiom

Schema 5. (x0=0
Schema 6. (xS{=((x&)+(

Instances of Schema 5 tell us the result of multiplying by zero. Instances of
Schema 6 with ‘¢’ replaced by ‘0’ define how to multiply by one in terms of first
multiplying by zero and then applying the already-defined addition function.
Once we know about multiplying by one, we can use another instance of Schema
6 with ‘¢” replaced by ‘SO’ to tell us how to multiply by two (multiply by one
and then do some addition). And so on, thus defining multiplication for every
number.
To summarize, then,

Defn. 20. BA is the theory whose language i€ 5, whose logic comprises clas-
sical negation rules and identity rules, and whose non-logical axioms are every
numerical instance of Schemas (1) to (6).

2Fine print: it in fact wouldn’t make any difference to the strength of our theory if we
allowed the placeholding metavariables to be systematically replaced by any terms, not just
standard numerals. But let’s keep things simple.

29

5 Two weak arithmetics

Note: BA has an infinite number of axioms — since any instance of our schemas
counts as an axiom. However, although it isn’t bnitely axiomatized, it is still an
electively axiomatized theory: given a candidate w!, we can electively decide
whether it is an instance of one of those six schemas and hence an axiom.

5.3 Some proofs inside BA

Let’s start with three brisk examples of how arithmetic can be done inside BA.

First, let’s show that BA 0+2 = 2. In other words, 0+ SS0 =SS0 is a
theorem. Note carefully, this w! isnOtan instance of Schema 3, so we have to do
a bit of work to derive it:

1. 0+0=0 AXxiom, instance of Schema 3
2. 0+S0=5(0+0) Axiom, instance of Schema 4
3. 0+S0=50 From 1, 2 by the identity laws
4. 0+ SS0=S(0+S0) Axiom, instance of Schema 4
5. 0+ SS0 =SS0 From 3, 4 by the identity laws

The relevant identity law here is of course LeibnizOs Law- LL, for short — which
allows us to substitute terms which are proven equal.
Similarly, we can prove 2 +2 =4, i.e. SS0 + SS0 = SSSS0:

1. SSO0+0 =SS0 AXxiom, instance of Schema 3
2. SS0+ S0 =S(550 +0) Axiom, instance of Schema 4
3. SS0+ S0 = SSS0 From 1, 2 by LL
4. SS0+ SS0 = S(SS0 + S0) Axiom, instance of Schema 4
5. SS0 + SS0 = SSSS0 From 3, 4 by LL

And now let’s show that BA 2 x 2 =4. In unabbreviated form, we need
(rather laboriously!) to derive SS0 x SS0 = SSSS0:

1. SSOx0=0 AXxiom, instance of Schema 5

2. SS0 x SO = (550 x 0) + SS0 AXxiom, instance of Schema 6

3. SS0 x SO =0+ SS0 From 1, 2 by LL

4. 0+ SS0 =550 Derived as in first proof above

5. SS0 x SO =SS0 From 3, 4 by LL

6. SSO x SSO0 = (SS0 x S0) + SS0 Axiom, instance of Schema 6

7. SSO x SS0 = SS0 + SS0 From 5, 6 by LL

8. SS0 + SS0 = SSSS0 Derived as in second proof above
9. SS0 x SS0 = SSSS0 From 7, 8 by LL

OK: so now let’s generalize. Suppose that for some other m we’d started
instead from the Axiom m + 0 = m, another instance of Schema 3. Then by
similar steps as for the first two proofs, we can derive m + SS0 = SSm, i.e.
m+2=m+2,

And then, generalizing further, if we keep extending the same proof idea with
a few more steps cut to the same pattern, we can get BA to show m +3 = m + 3,
and m+ 4 =m + 4, and so on. In fact, for any m, n, BA-m+n=m+n.

30

BA is a sound and negation-complete theory of the truths of Lp

Similarly, looking at the second proof pattern, we see that we’ll be able to
similarly prove m x 2 = m x 2 for any m. And then, generalizing further, if we
keep extending the same proof idea with more steps cut to the same pattern, we
can prove m x 3=m x 3, and m x 4 = m x 4, and so on. In fact, take any m, n:
then BAFm xn=mXxn.

We can now generalize a step further: BA can in fact correctly evaluate not
just the simplest terms but all terms of its language. That is to say,

Theorem 9. Supposer is a term of Lp and suppose the value of on the
intended interpretation of the symbols ist. Then BA+ 7 =t.

Why so? Well, let’s take a very simple example and then draw a general moral.
Suppose we want to show e.g. that (2 + 3) x (2 x 2) = 20 — you’ll forgive me for
not writing out ‘20’ in basic notation with its twenty occurrences of ‘S’! Then
we can proceed as follows.

1. 2+3)x@x2)=@+3)x2x2) Identity law

2. 2+3=5 BA can do simple addition

3. 2+3)x(2x2)=5x(2x2) From 1, 2 by LL

4, 2x2=4 BA can do simple multiplication
5. 2+3)x(2x2)=5x4 From 3, 4 by LL

6. 5x4=20 BA can do simple multiplication
7. 2+3)x(2x2)=20 From 5, 6 using LL

What we do here is ‘evaluate’ the complex formula on the right ‘from the inside
out’, reducing the complexity of what’s on the right at each stage, and hence
eventually equating the complex formula on the left with a standard numeral on
the right. Evidently, we can always do this trick, whatever complex formula we
start from.

Next, we note that BA knows that dilerent standard numerals are indeed not
equal. For example, let’s show that BA - 4 # 2.

1. SSSS0 =SS0 Supposition

2. SSSS0 = SS0 — SSS0 = S0 Axiom, instance of Schema 2

3. SSS0 = S0 From 1, 2 by Modus Ponens

4. SSS0=S0—SS0=10 Axiom, instance of Schema 2

5. SS0=0 From 3, 4 by Modus Ponens

6. 0 # SS0 Axiom, instance of Schema 1

7. Contradiction! From 5, 6 and identity rules

8. SSSS0 # SSO From 1 to 7, by Reductio ad Absurdum.

And a little reflection on this illustrative proof should now convince you that:

Theorem 10. If s and t are distinct numbers, thenBA -5 # t.

5.4 BA s a sound and negation-complete theory of the truths of Lp

We can conclude from our last two theorems that
31

5 Two weak arithmetics

Theorem 11. For any Lg w! ¢, if ¢ is true then BA I ¢, and if ¢ is false
then BA F —¢. In a phrase, BA correctly decides every Lg w!.

Proof. The only w!s of BA are equations preceded by zero or more negation
signs. Since our logic is classical, we can ignore pairs of negation signs, so any
w! ¢ is equivalent to either (a) o = 7 or (b) o # 7, for some terms o, 7. Let &
evaluate to s and 7 evaluate to ¢. Then by Theorem 9, (i) BA+ o =5 and (ii)
BAF T =t

And now we just consider the four possible cases.

(a) Suppose ¢ is equivalent to ¢ = 7, and is true because s = ¢. Then s must
be the very same numeral as t. We can therefore immediately conclude from (i)
and (ii) that BA - o = 7 by the logic of identity. So BA .

(b) Suppose alternatively that ¢ is equivalent to ¢ = 7, and is false because
s # t. Then by Theorem 10, BA 5 #t, and together with (i) and (ii) that
implies BA - o # 7, again by the logic of identity. So BA - —¢.

(c) Suppose ¢ is equivalent to o # 7, and is true because s # t. Then as in
(b), BAF o # 7. So now BA I- ¢.

(d) Suppose finally that ¢ is equivalent to ¢ # 7 and is false because s = t. As
in (a), BA+ o =7, hence BAF —¢.

Hence, Lp w! correctly decides every . O

We therefore immediately have

Theorem 12. BA is a sound electively axiomatized theory which is negation
complete.

Proof. BA is evidently a sound theory — all its axioms are trivial arithmetical
truths, and its logic is truth-preserving, so all its theorems are true. It is elec-
tively axiomatized. And we’ve just seen that for every w! ¢, it proves the true
one of ¢ and —¢; and so is a negation complete theory. O

“Hold on! | thought we couldn’t have a sound electively axiomatized theory
of arithmetic which is negation complete.” No. Theorem 1 didn’t say that: it
said we couldn’t have a sound, negation-complete, electively axiomatized the-
ory which contains what we called the language of basic arithmetic — and that
language allows us to quantify over numbers. By contrast, Ly is quantifier-free.
This language only allows us to express facts about adding and multiplying par-
ticular numbers (it can’t express numerical generalizations). That’s why it can
be complete.

“Ah. So having quantifiers in a theory’s language can make all the dilerence?”
Yes!

32

Robinson Arithmetic, Q

5.5 Robinson Arithmetic, Q

That’s all very straightforward, but also rather unexciting.?> The reason that
Baby Arithmetic manages to prove every correct claim that it can express —
and is therefore negation complete by our Defn. 8 — is that it can’t express
very much. In particular, as we just stressed, it can’t express any generalizations
at all. And so the obvious way to start beefing up BA into something more
expressively competent is to restore the familiar apparatus of quantifiers and
variables. That’s what we’ll start doing.

First, then, we define the Pbrst-order language of basic arithmeticL 4 (compare
§1.5). We’'ll keep the same non-logical vocabulary as in Lg: so there is still
just a single non-logical constant denoting zero, plus the three function-symbols,
S, +, x, still expressing successor, addition and multiplication. But now we allow
ourselves the full linguistic resources of first-order logic, all the connectives plus
the usual supply of quantifiers and variables to express generality, as well as the
built-in identity predicate. We fix the domain of the quantifiers to be the natural
numbers. The result is the language L 4: this is the least ambitious language
which ‘contains the language of basic arithmetic’ in the sense of Defn. 11.

Now for Robinson Arithmetic, commonly denoted simply ‘Q’. This is a theory
built in the formal language L4, and coming equipped with a full first order
proof system for classical logic. And for its non-logical axioms, now that we
have the quantifiers available to express generality, we can replace each of BA’s
metalinguistic schemas (specifying an infinite number of formal axioms governing
particular numbers) by a single generalized Axiom expressed inside L 4 itself. For
example, we can replace the first two schemas governing the successor function
by the following:

Axiom 1. ¥x(0 # Sx)
Axiom 2. VxVy(Sx =Sy - x=Yy)

Obviously, each instance of our earlier Schemas 1 and 2 can be deduced from
the corresponding Axiom by instantiating the quantifiers with numerals.

These Axioms tell us that zero isn’t a successor, but they don’t explicitly rule
out there being other objects that aren’t successors cluttering up the domain of
guantification. We didn’t need to fuss about this before, because by construction
BA can only talk about the numbers represented by standard numerals in the
sequence ‘0,S0,SS0,...". But now we have the quantifiers in play. And these
guantifiers are intended to run over the natural numbers; we certainly don’t

3Mathematically unexciting, anyway. But there is perhaps some philosophical interest. For
we might reasonably suppose that the axiom schemas of BA at least partially encapsulate
the meanings of the symbols for the symbol for zero and for the successor, addition and mul-
tiplication functions — they partially define what we are talking about. So it is consequently
quite tempting to be a logicist about the arithmetic truths proved by BA, regarding them
as truths of logic-plus-definitions. And this might encourage us to pursue some ambitious
form of logicism (see @1.5).

33

5 Two weak arithmetics

intend them to be also running over stray objects that aren’t successors and
aren’t zero either. So let’s reflect that in an axiom which says that, other than
zero, every number is a successor:

Axiom 3. Wx(x #0 — Jy(x = Sy))

Next, we can similarly replace our previous schemas for addition and multi-
plication by universally quantified Axioms in the obvious way:

Axiom 4. Wx(x+0=x)

Axiom 5. WxVy(x+ Sy =S(x+vy))
Axiom 6. Vx(xx0=0)

Axiom 7. VxVy(x x Sy = (x X y) +x)

Again, each of these axioms entails all the instances of BA’s corresponding
schema. In sum, then:

Defn. 21. The formal theory with languagel 4, Axioms 1 to 7, plus a classical
prst-order logic, is standardly called Robinson Arithmetic, or simply Q.

Since any BA axiom can be derived from one of our new Q Axioms, anything
that can be proved in BA can be proved in Q.

It is worth noting, for future reference, that Q was first isolated as a weak
system of arithmetic worthy of study by Raphael M. Robinson in 1952 - i.e.
long after Godelian incompleteness was discovered.

5.6 Robinson Arithmetic is not complete

Like BA, Q too is assuredly an electively axiomatized sound theory. Its axioms
are all true; and its logic is truth-preserving; so its derivations are proper proofs
in the intuitive sense of demonstrations of truth. Every theorem of Q is a true
L4 w!, then. But just which truths of L4 are theorems of Q?

Well, on the positive side,

Theorem 13. Q correctly decides every quantiber-freel. 4 sentence. In other
words, Q + ¢ if the quantiber-free w! ¢ is true, and Q - —y if the quantiber-
free wl ¢ is false.

Proof. We know that Q like BA will correctly decide every atomic w!, i.e. every
equation between terms. We can then appeal to a background result of proposi-
tional logic which tells us that Q must then correctly decide every w! built up
from those atoms using just the propositional connectives.* O

4 If you insist on details: Suppose the wff contains the atoms a1, as, ..., an, and consider
any assignment V of truth-values to those atoms. Let a,‘f be ay, if that is true on V, and
Aa,, otherwise. Similarly, let ¢V be ¢ if that is true on V', and Ay otherwise. So consider the

34

Robinson Arithmetic is not complete

So far, so good. However, there are very simple true quantibed sentences that
Q can’t prove. For example, while Q can prove any particular w! of the form
0+ 7 =, it canOt prove the corresponding universal generalization

Theorem 14. Q! Vx(0 + x = x).

Proof Since Q is a theory with a standard first-order theory, for any L -
sentence ¢, QF g only if Q! ¢ (that’s just the soundness theorem for first-order
logic). Hence one way of showing that Q! ¢ is to show that Q " ¢: and we can
show that by producing a countermodel to the entailment — i.e. by finding an in-
terpretation (a deviant, unintended, ‘non-standard’, re-interpretation) for L,4’s
w!s which makes Q’s axioms true-on-that-interpretation but which makes ¢
false.

So here goes: take the domain of our deviant, unintended, re-interpretation
to be the set N* comprising the natural numbers but with two other ‘rogue’
elements a and b added (these could be e.g. Kurt Godel and his friend Albert
Einstein — but any other pair of distinct non-numbers will do). Let ‘0’ still refer
to zero. And take ‘S’ now to pick out the successor* function S* which is defined
as follows: S*n = Sn for any natural number in the domain, while for our rogue
elements S*a = a, and S*b = b. It is very easy to check that Axioms 1 to 3 are
still true on this deviant interpretation. Zero is still not a successor. Dilerent
elements have dilerent successors. And every non-zero element is a successor
(perhaps a self-successor! — though not necessarily an eventual successor of zero).

We now need to extend this interpretation to re-interpret the function-symbol
‘+’, Suppose we take this to pick out addition*, where m +* n = m + n for any
natural numbers m, n in the domain, while a« +* n = a and b +* n = b. Further,
for any = (whether number or rogue element), z +*a =b and x +* b = a. If you
prefer that in a matrix (read o! row +* column):

+* n alb
m | m+n|b|a
a a b | a
b b b | a

It is again easily checked that interpreting ‘+’ as addition™* still makes Axioms
4 and 5 true. (In headline terms: For Axiom 4, we note that adding* zero on
the right always has no elect. For Axiom 5, just consider cases. (i) m +* S*n =

line of a truth table for ¢ corresponding to V. On the left of the table, this line assigns values
to the atoms, and tells us that aY, ag, Cey @X are all true. The corresponding assignment
of a value to ¢ tells us that ¢V true. And the background result from propositional logic
that we need is that a¥7a¥7 .. .,oz,‘{ ' pr V.

Roughly, then, propositional logic can prove what’s said by the line of a truth table for
¢ corresponding to the valuation V.

Now, a quantifier-free L4 sentence ¢ is built up using propositional connectives from
atoms « of the form o = 7. Consider the valuation V' that assigns these atoms their actual
values. As in the proof of Theorem 11, Q proves the true atoms and proves the negations
of the false ones, so Q proves each aV'. Hence by the background result it also proves ¢V,
i.e. proves whichever is the true one of ¢ and Ap.

35

5 Two weak arithmetics

m + Sn = S(m +n) = S*(m +* n) for ‘ordinary’ numbers m,n in the domain.
(i) a + S*n =a = S*a = S*(a +* n), for ‘ordinary’ n. Likewise, (iii) b+ S*n =
S*(b+*n). (iv) x +* S*a =z +a = b= 5*b = S*(x +* a), for any z in the
domain. (v) Finally, x +* S*b = S*(z +* b). Which covers every possibility.)
We are not quite done, however, as we still need to show that we can give a co-
ordinate re-interpretation of ‘x’ in Q by some deviant multiplication* function.
We can leave it as an exercise to fill in suitable details. Then, with the details
filled in, we will have an overall interpretation which makes the axioms of Q true
and Vx(0 + x = x) false. So Q! ¥x(0 + x =x) a

Theorem 15. Q is negation incomplete.

Proof. Put ¢ = Vx(0 + x = x). We’ve just shown that Q ! (. But obviously, Q
can’t prove —y either. Just revert to the standard interpretation built into L 4. Q
certainly has true axioms on this interpretation. So all theorems are true on that
interpretation, but - is false on that interpretation, so it can’t be a theorem.
Hence ¢ is formally undecidable in Q. a

Of course, we’ve already announced that Gddel’s incompleteness theorem is going
to prove that no sound axiomatized theory whose language is at least as rich
as L4 can be negation complete — that was Theorem 1. But we don’t need to
invoke anything as elaborate as Godel’s arguments to see that Q is incomplete.
Q is, so to speak, boringly incomplete.

5.7 Statements of order in Robinson Arithmetic

Let’s now start thinking about the properties and relations that can be captured
in Robinson Arithmetic — recalling the definition of §4.2.
Here’s an example that will be useful:

Theorem 16. In Robinson Arithmetic, the less-than-or-equal-to relation is not
just expressed but captured by the wBv(v +x =y).

It is obvious that the w! expresses the relation. So what we need to show is that,
for any particular pair of numbers, m, n, if m < n, then Q + 3Iv(v + m = n), and
if m > n, then Q - —3v(v +m = 7).

Proof Suppose m < n, so for some k£ > 0, k£ +m = n. Q can prove everything
BA proves and hence, in particular, can prove every true addition equation. So
we have Q - k + m = n. But then 3v(v + m = n) follows by existential quantifier
introduction. Therefore Q F 3v(v +m =), as was to be shown.

Suppose alternatively m > n. We need to show Q - —3v(v+m =n). We'll
first demonstrate this in the case where m = 2, n = 1, using a Fitch-style proof
system. For brevity we will omit statements of Q’s axioms and some other trivial
steps; we drop unnecessary brackets too.

36

Why Robinson Arithmetic is interesting

1. Jv(v + SS0 = S0) Supposition
2. a+SS0=50 Supposition
3. a+SS0 = S(a+ S0) From Axiom 5
4. S(a+S0) =50 From 2, 3 by LL
5. a+S0=S(+0) From Axiom 5
6. SS(a+0) =50 From 4, 5 by LL
7. a+0=a From Axiom 4
8. SSa = S0 From 6, 7 by LL
9. SSa=S0—Sa=0 From Axiom 2
10. Sa=0 From 8, 9 by Modus Ponens
11. 0=>Sa From 10
12. 0#Sa From Axiom 1
13. Contradiction! From 11, 12
14. Contradiction! JE 1, 2-13
15. —3v(v + SS0 = S0) From 1-14 by Reductio

The only step to explain may be at line (14) where we use a version of the
Existential Elimination rule: if the temporary supposition ¢(a) leads to contra-
diction, for arbitrary a, then Jvp(v) must lead to contradiction. And having done
the proof for the case m = 2, n = 1, inspection reveals that we can use the same
general pattern of argument to show Q + —3v(v +m =n) whenever m > n. So
we are done. O

Given the result we’ve just proved, we can sensibly add the standard symbol ‘<’
to L4, the language of Q, defined so that whatever terms — not just numerals —
we put for the placeholders ‘¢’ and ‘C’, £ < (is just short for Iv(v + £ = (), and
then Q will be able to prove at least the expected facts about the less-than-or-
equals relations among quantifier-free terms. (Well, we really need to be a bit
more careful than that in stating the rule for unpacking the abbreviation, if we
are to avoid any possible ‘clash of variables’. But we’re not going to fuss about
that sort of detail.)

Note, by the way, that some presentations in fact treat ‘<’ as a primitive
symbol built into our formal theories like Q from the start, governed by its own
additional axiom(s). But nothing important hangs on the dilerence between
that approach and our policy of introducing the symbol by definition.> Since
it so greatly helps readability, we’ll henceforth make very free use of ‘<’ as an
abbreviatory symbol inside formal arithmetics.

5.8 Why Robinson Arithmetic is interesting

Given it can’t even prove ¥x(0 +x =x), Q is evidently a very weak theory of
arithmetic. Even so, despite its great shortcomings, Q does have some nice prop-
erties.

5And of course, nothing hangs either on our policy of introducing " ’ as our basic symbol
rather than ‘<’; which could have been defined by £ < ¢ =ger #v(Sv+ £ = ().

37

5 Two weak arithmetics

As we saw, it can capture the particular decidable relation that obtains when
one number is at least as big as another. And in fact, we can announce a quite
general result:

Theorem 17. Q can capture all decidable numerical properties b i.e. it is suf-
bciently strong in the sense of Defrl9.

That might initially seem very surprising indeed, given Q’s weakness. But re-
member, ‘su”cient strength’ was defined as a matter of being able to case-by-case
prove enough w!s about decidable properties of individual numbers. It turns out
that Q’s hopeless weakness at proving generalizations doesn’t stop it from prov-
ing enough facts about particular numbers.

So that’s why Q is especially interesting — it is about the weakest arithmetic
which is su"ciently strong (and it was isolated by Robinson for just that reason),
and so about the weakest arithmetic for which Godelian proofs of incompleteness
can be run. Suppose, then, that a theory is formally axiomatized, consistent and
can prove everything Q can prove (those do indeed seem very modest require-
ments). Then what we’ve just announced and promised can be proved is that
any such theory will be ‘su"ciently strong’. And therefore e.g. Theorem 8 will
apply — any such theory will be incomplete.

However, we can only prove the announced Theorem 17 that Q doeshave su"-
cient strength if and when we have a quite general theory of elective decidability
to hand. And we don’t want to get embroiled in developing that theory (at least
just yet). So what we will be proving quite soon (in Chapter 9) is a somewhat
weaker claim about Q. We’ll show that it can capture all so-called ‘primitive
recursive’ properties, where these form a large and very important subclass of
the decidable properties. This major theorem will be a crucial load-bearing part
of our proofs of various Gddel style incompleteness theorems: it means that Q
gives us ‘the modest amount of arithmetic’ needed for a version of Theorem 2.

But before we get round to showing all that, we are first going to take a look
at a much richer arithmetic than Q, namely PA.

38

6 First-order Peano Arithmetic

The previous chapter introduced two weak theories of arithmetic, BA and Q. In
this chapter — jumping over a whole family of intermediate-strength theories —
we introduce a much richer first-order theory of arithmetic, PA. It’s what you
get by adding a generous induction principle to Q. But what’s that?

6.1 Induction: the very idea

Here is the basic idea we need:

Whatever numerical property we take, if we can show that (i) zero has
that property, and also show that (ii) this property is always passed
down from a number n to its successor Sn, then this is enough to
show (iii) the property is passed down to all nhumbers.

This is the key informal principle of (arithmetical) induction , and is a standard
method of proof for establishing arithmetical generalizations.

It is plainly a sound rule. Why? If a property is possessed by zero and then is
passed down from each number to its successor, then it must percolate down to
any given number — since you can get to any number by starting from zero and
repeatedly adding one.

For those not so familiar with this standard procedure for establishing arith-
metical generalizations, let’s have a mini-example of the principle at work in an
everyday informal mathematical context. We’ll take things slowly.

Suppose we want to establish that the sum of the brstn numbers isn(n+1)/2.
Well, let’s first introduce some snappy notation.

x(n) abbreviates the claim: 1+2+3+...+n=n(n+1)/2

Then (i) trivially x(0) is true (the sum of the first zero numbers is zero)!
Suppose that x(n) is true for a given n. Then we can reason like this:

1+2+3+...+50n = (1+2+3+...+n)+(n+1)
= nn+1)/2+n+1)

(n+1)(n+2)/2

(Sn)(Sn+1)/2

39

6 First-order Peano Arithmetic

Which means that x(Sn) will be true too. Hence, generalizing, we have (ii) for
all numbers n, if x(n), then x(Sn)

Given (i) and (ii), by induction we can conclude Vnyx(n) - i.e., as we claimed,
for any n, the sum of the first n numbers is n(n + 1)/2.

Here’s another example of the same principle at work, in telegraphic form. Sup-
pose we want to show that all the theorems of a certain Hilbert-style axiomatized
propositional calculus are tautologies.

This time, define x(n) to be true if the conclusions of proofs (without non-
logical premisses) up to n steps long are tautologies. We note that x(0) is true
(trivial!). And then we can argue that if x(n) then x(Sn) (for note that the last
step of an n+ 1-step proof must either be another instance of an axiom, or follow
by modus ponens from two earlier conclusions which — since y(n) is true — must
themselves be tautologies, and either way we get another tautology). Hence, ‘by
induction on the length of proofs’, we get the desired result.!

6.2 The induction axiom, the induction rule, the induction schema

The intuitive idea, then, is that for any property of numbers, if zero has it and
it is passed from one number to the next, then all numbers have it. How are we
going to implement this idea in a formal theory of arithmetic?

We’ve just expressed the intuitive idea as a generalization over properties of
numbers. Hence to frame a corresponding formal version, it might seem natural
to use a formalized language that enables us to generalize not just over numbers
but over properties of numbers. This means it might seem natural to use a lan-
guage with second-order quantifiers. That is to say, we not only have first-order
guantifiers running over all the numbers, but also a further sort of quantifier
which runs over all properties-of-numbers. In such a language, we could state a
second-order

Defn. 22. Induction Axiom.

YX({X0 A Vx(Xx — XSx)} — ¥xXx)

1Beginners, in week one of their first logic course, have the contrast between ‘deductive’ and
‘inductive’ arguments dinned into them. So sternly are they drilled to distinguish conclusive
deductive arguments from merely probabilistic inductions, that some students can’t help
feeling uncomfortable when they first hear of ‘induction’ being used in arithmetic!

So let’s be clear. We have a case of empirical, non-conclusive, induction |, when we start
from facts about a limited sample (observed swans, say) and infer a claim about the whole
population (e.g. concluding that all swans are white). The gap between the sample and
the whole population, between the particular bits of evidence and the universal conclusion,
allows space for error. The inference isn’t deductively watertight.

By contrast, in the case of arithmetical induction ;| we start not from a bunch of claims
about particular numbers but from an already universally quantified claim about all num-
bers, something of the form: for all n, if x(n) then x(Sn). We put that universal claim
together with the particular claim x(0) to derive another universal claim, for all n, x(n).
This time, then, we are going from universal to universal, and that’s how it is possible for
there to be no deductive gap.

40

Being generous with induction?

(Predicates are conventionally written upper case: so too for variables that are to
occupy predicate position.) You can read this Axiom as saying “ for any property
X, given that 0 has X, and given that if a number has X so does its succcessor,
then every number has property X.”

Seemingly natural though this might be, however, we will be focusing on
formal theories whose logical apparatus involves only regular first-order quan-
tification. This isn’t due to some perverse desire to work with one hand tied
behind our backs. It is because there are some troublesome questions about
using second-order logic. For a start, there are technical issues: second-order
consequence (at least on the natural understanding) can’t be captured in a nice
formalizable logical system: so theories using a full second-order logic aren’t ef-
fectively axiomatizable. And then there are more philosophical issues: just how
well do we really understand the idea of quantifying over ‘all properties of num-
bers’? Is that a determinate totality which we can quantify over? We don’t want
to tangle with these worries here and now.

However, if we don’t have second-order quantifiers available to range over
properties of numbers, how can we handle induction? Well, one way is to adopt
the following rule of inference:

Defn. 23. Induction Rule. For any suitable open w! ¢(x) of our arithmetical
language, giveny(0) and vx(p(x) — ©(Sx)), we can infer Vxp(x).

We will discuss what counts as ‘suitable’ in the next section — and then return
to the issue again in §7.5.

Alternatively, we can trade in our induction rule for a general axiom schema,
and say:

Defn. 24. Induction Schema. For any suitable open w! o(x) of our arith-
metical language, the corresponding instance of this schema

{0(0) A x(() = ©(Sx))} — Vxp(x)

can be taken as an axiom.

Given ¢(0) and Vx(p(x) — ©(5x)), we can either apply the Rule to deduce
Vxp(x), or we can take the corresponding instance of the Schema and then apply
modus ponens to deduce the same conclusion (assuming our theory can handle
conjunctions and conditionals!). The elect will be the same either way.

6.3 Being generous with induction?

Suppose then that we start again from the first-order arithmetic Q, and aim to
build a richer theory in its language L4 by adding induction, e.g. by adopting
all the axioms which are ‘suitable’ instances of the Induction Schema. But what
makes for a ‘suitable’ predicate for use in an instance of the Schema?
Intuitively, such an instance of the Induction Schema should be acceptable
as an axiom, so long as we replace ¢(x) in the schema by an open w! which

41

6 First-order Peano Arithmetic

expresses a genuine arithmetical property. Why? Well, consider any open w!
o(x) of L4. This will be built from no more than the constant term ‘0’, the
familiar successor, addition and multiplication functions, plus identity and other
logical apparatus. Therefore — you might very well suppose — it ought to express
a perfectly determinate arithmetical property (even if, in the general case, we
can’t always decide whether a given number n has the property or not). So why
not be generous and allow any opeih 4, w! at all to be suitable for substitution
in the Induction Schema?

Here’s a positive argument for generosity. Suppose for a moment ¢(x) has
no free variables other than ‘x’. Then a corresponding instance of the Induc-
tion Schema will only allow us to derive Vxpo(x) when we can already prove the
corresponding (i) ¢(0) and also can prove (i) Vx(o(x) — ©(Sx)). But if we can
already prove (i) and (ii), we can already prove each and every one of ¢(0),
©(S0), ©(550), However, there are no ‘stray’ numbers which aren’t denoted
by some numeral; so that means that we can prove of each and every number,
taken separately, that ¢ is true of it. What more can it possibly take for ¢ to ex-
press a genuine property that indeed holds for every number, so that (iii) ¥x@(x)
is true?

In sum, it seems that we can’t overshoot by allowing as axioms instances
of the induction schema for any open w! ¢ of L4 with one free variable. The
only usableinstances from our generous range of induction axioms will be those
where we can prove the antecedents (i) and (ii) of the relevant conditionals: and
in those cases, we will surely have every reason to accept the consequents (iii)
too.

In fact, we can o"cially extend the ‘suitable’ candidates for ¢ a step further.
We will allow uses of the inference rule where ¢(x) also has slots for additional
variables dangling free (variables which are carried along for the ride, so to
speak). Equivalently, we will take the induction axioms to be instances of the
induction schema where the expression substituted for p(x) can have other free
variables dangling free. For more explanation, see IGT2, §§9.3 and 12.1. But we
needn’t fuss here about elaborating this point.

6.4 First-order Peano Arithmetic introduced

Suppose then that we are generous with induction and agree that any open w! of
L 4 is suitable for use in an instance of the induction schema. This means moving
on from Q, and jumping over a range of possible intermediate theories, to adopt
the much richer theory of arithmetic that we can briskly define as follows:

Defn. 25. PA D First-order Peano Arithmetic? D is the theory with a standard
prst-order logic whose language i€. 4, and whose axioms are those d plus all
instances of the induction schema that can be constructed from open w!s df 4.

2The name is conventional. Giuseppe Peano did publish a list of axioms for arithmetic in
1889. But they weren’t first-order, only explicitly governed the successor relation, and — as
he acknowledged — had already been stated by Richard Dedekind.

42

First-order Peano Arithmetic introduced

Like BA then, PA as presented here has an infinite number of axioms. However
that’s fine: it is plainly still decidable whether any given w! has the right shape
to be one of the new axioms, so this is still a legitimate formalized theory.3

Let’s have three initial examples of what we can formally prove using induction.
First, we’ll check that we have plugged the particular gap we noted in Q. Recall:
Q has ¥x(x + 0 = x) as an axiom, so that’s trivially a theorem of the theory; but
it feebly can’t prove ¥x(0 + x = x). But PA can. We just put 0 + x = x for ¢(x),
prove p(0) (trivial!), prove Vx(¢(x) — ¢(Sx)), and use induction to conclude
Vxp(x). Spelling that out in detail:

1. 0+0=0 Instance of Q’s Axiom 4
2 O+a=a Supposition
3 S(0+a)=Sa From 2 by the identity laws
4. 0+Sa=S(0+a) Instance of Q’s Axiom 5
5 0+ Sa=Sa From 3, 4
7. 0+a=a—0+Sa=S5a From 1, 6 by Conditional Proof
8. Wx(0+x=x— 0+ Sx=5x) From 7, since a was arbitrary.
9. 0+0=0AYX(O0+x=x—0+Sx=5x)
From 1, 8

10. {0+0=0AWX(0+x=x— 0+ Sx=5x)} — ¥x(0 +x = x)
Instance of Induction Schema
11. ¥x(0+x=x) From 9, 10 by Modus Ponens

For a second example, let’s note that PA proves Vx(x # Sx). Just take o(x) to
be x # Sx. Then PA trivially proves ¢(0) because that’s Q’s Axiom 1. And PA
also proves Vx(¢(x) — ¢(Sx)) by contraposing Axiom 2. And then an induction
axiom tells us that if we have both ¢(0) and ¥x(x(x) — ©(5x)) we can deduce
Vxp(x), i.e. no number is a self-successor. It’s as simple as that.

Yet this trivial little result is worth noting when we recall our deviant inter-
pretation which makes the axioms of Q true while making Vx(0 + x = x) false:
that interpretation featured Kurt Godel himself added to the domain as a rogue
self-successor. A bit of induction, however, rules out self-successors.

A third observation. PA allows, in particular, induction for the formula

() (x7#0 — Jy(x=Sy)).

But now note that the corresponding «(0) is a trivial logical theorem. Likewise,
Yxp(Sx) is an equally trivial theorem, and that entails ¥x(p(x) — ©(5x)). So we
can use an instance of the Induction Schema inside PA to derive Vxp(x). But
that’s just Axiom 3 of Q. So our initial presentation of PA — as explicitly having
all the Axioms of Q plus the instances of the Induction Schema - involves a
certain redundancy.

3PA as we’ve presented it has an infinite number of axioms: but can we find a finite bunch of
axioms for the theory, i.e. a finite set of axioms with the same consequences? No. First-order
Peano Arithmetic is not finitely axiomatizable. That’s not an easy result though!

43

6 First-order Peano Arithmetic

6.5 Summary overview of PA

Given its very natural motivation, PA is the benchmark axiomatized first-order
theory of basic arithmetic. Just for neatness, then, let’s bring together all the
elements of its specification in one place.

First, to repeat, the languageof PA is L4, a first-order language whose non-
logical vocabulary comprises just the constant ‘0’, the one-place function symbol
‘S’, and the two-place function symbols ‘+’, *x’. The built-in interpretation for
L 4 gives those symbols their standard interpretation and takes the quantifiers
to run over the natural numbers.

Second, PA’s deductive proof systemis some standard version of classical first-
order logic with identity. The dilerences between various presentations of first-
order logic of course don’t make a dilerence to what sentences can be proved in
PA. It’s convenient, however, to fix o"cially on a Hilbert-style axiomatic system
for later metalogical work theorizing about the theory.

And third, its non-logical axioms — eliminating the redundancy we just noted
from our original specification — are the following sentences:

Axiom 1. ¥x(0 # Sx)

Axiom 2. VxVy(Sx =Sy = x=Yy)
Axiom 3. Vx(x+0=x)

Axiom 4. VxVy(x+ Sy = S(x +Yy))
Axiom 5. Vx(xx0=0)

Axiom 6. VxVy(x x Sy = (x X y) +x)

plus every instance of the following

Induction Schema [p(0) A Yx(p(x) — ©(S5x))] — Vxp(x)

where o(x) is an open w! of L, that has ‘x’ free.*

6.6 What can PA prove?

Even BA is good at proving quantifier-free equations. Q adds some ability to
prove quantified w!s. We have so far noted just three additional quantified the-
orems that PA can prove. Though it gets tedious, more exploration will reveal
that other familiar and not-so-familiar basic truths about the successor, addi-
tion, multiplication functions and about the ordering relation (as defined in §5.7)
are provable in PA using induction. So how much more can PA prove?

A great deal! In fact, so much that we might reasonably have hoped - at least
before we’d heard of Godel’s incompleteness theorems — that PA would turn out
to be a complete theory that indeed pins down all the truths of L 4.

4Fine print: if ¢(x) is replaced by a wff with other free variables then we’ll need to ‘bind’
this instance with universal quantifiers, if we prefer every axiom to be a closed sentence.

44

Non-standard models of PA?

Here is something else that would have encouraged this false hope, pre-Godel.
Suppose we define the language Lp to be L4 without the multiplication sign.
Take P — so-called Presburger Arithmetic — to be the theory couched in the lan-
guage Lp, whose axioms are Q’s now familiar axioms for successor and addition,
plus (the universal closures of) all instances of the induction schema that can
be formed in the language Lp. In short, P is PA minus multiplication. Then P
is a negation-complete theory of successor and additiorf\We are not going to be
able to prove that here — the argument uses a standard model-theoretic method
called ‘elimination of quantifiers’ which isn’t hard, and was known in the 1920s,
but it would just take too long to explain.)

So the situation is as follows, and was known before Godel got to work. (i) There
is a complete formal axiomatized theory BA whose theorems are all the truths
about successor, addition and multiplication expressible in the quantifier-free
language L. (ii) There is another complete formal axiomatized theory — equiv-
alent to PA minus multiplication — whose theorems are exactly the first-order
truths expressible using just successor and addition. Against this background,
Godel’s result that adding multiplication in order to get full PA gives us a theory
which is incomplete and incompletable (if consistent) comes as a rather nasty
surprise. It wasn’t obviously predictable that adding multiplication would make
all the dilerence. Yet it does. In fact, as we’ve said before, as soon we have an
arithmetic as strong as Q which has multiplication as well as addition, we get
incompleteness.

And by the way, it isn’t that a theory of multiplication must in itself be
incomplete. In 1929, Thoralf Skolem showed that there is a complete theory
for the truths expressible in a suitable first-order language with multiplication
but lacking addition or the successor function. So, when quantifiers are in play,
why does putting multiplication together with addition and successor produce
incompleteness? The answer will emerge shortly enough, but pivots on the fact
that even a weak first-order arithmetic like Q with all three functions available
can express/capture all ‘primitive recursive’ functions. But we’ll have to wait
until the next-but-one chapter to explain what that means.

6.7 Non-standard models of PA?

We saw that Q has ‘a non-standard model’, i.e. there is a deviant unintended
interpretation that still makes the axioms of Q true. Let’s finish the chapter
by asking whether PA similarly has non-standard models; does it have deviant
unintended interpretations that still make its axioms all true?

Yes. Assuming PA is true of the natural numbers (and so is consistent), the
Lowenheim-Skolem theorem tells us that it must have non-standard models of
all infinite sizes. So PA doesn’t pin down uniquely the structure of the natural
numbers. Indeed, even if we assume that we are looking for a countable model
- i.e. a model whose elements could in principle be numbered o! — there can be
non-standard models of PA. A standard compactnessargument shows this.

45

6 First-order Peano Arithmetic

I’ll finish this chapter by giving a speedy proof of the last claim. But this is an
optional extra, assuming you know about compactness arguments. But if you
don’t, then no matter — nothing in later chapter depends on you knowing this
proof.

Suppose, then, that we add to the language of PA a new constant c, and
add to the axioms of PA the additional axioms ¢ # 0, c # 1, ¢ # 2, ...,
c # n, Evidently each Pnite subset of the axioms of the new theory has
a model (assuming PA is consistent and has a model): just take the intended
standard model of arithmetic and interpret c to be some number greater than
the maximum n for which ¢ # 7 is in the given finite suite of axioms.

Since each finite subset of the infinite set of axioms of the new theory has a
model, the compactness theorem tells us the whole theory must have a model.
And then, by the downward Lowenheim-Skolem theorem there will be in par-
ticular a countable model of this theory, which contains a zero, its successors-
according-to-the-theory, and rogue elements including the denotation of c. Since
this structure is a countable model of PA-plus-some-extra-axioms it is, a fortiori,
a countable model of PA, and must be distinct from the standard one as its
domain has more than just the zero and its successors.”

54«0OK: that was smart! But can you now describe one of these countable-but-weird models of
PA? In particular, what do the interpretations of the successor, addition and multiplication
functions now look like?” The relevant functions take some effort to describe. For Tennen-
baumOs Theoremtells us that, for any non-standard model of PA, the interpretations of the
addition and the multiplication functions can’t be nice computable functions, and so can’t
be arithmetical functions that we can give a familiar sort of description of. But pursuing
this further would take us too far off-piste.

‘We might note, though, that our compactness argument shows that there are non-
standard countable models without assuming that PA is negation incomplete. But if we
already have the incompleteness theorem to hand, we can get the same conclusion another
way, again appealing to a smidgin of model theory. Suppose Theorem 1 applies, so that
there will be a true sentence Gpa of basic arithmetic such that PA! Gpa and PA! AGpa.
That means both PA+AGpa and PA + Gpa are consistent. So both PA 4+ AGpa and PA + Gpa
will have countable models (by completeness and the Lowenheim-Skolem theorem); these
two countable models will both be models of PA, but can’t be isomorphic because they give
different verdicts on Gpa. Hence there are countable models of PA which aren’t isomorphic,
and so they can’t both be (isomorphic to) the standard model.

46

7 Quantifier complexity

W!s of the language L4 come in dilerent degrees of quantiber complexity \We
can distinguish, for a start, so-called $ ¢ , #1, and %, wls. Later, in §11.2, we
will note that the standard Godel sentence that sort-of-says ‘I am unprovable’
is a %, w!. This is important — it means that, while the Godel sentence might
be very long and messy, there is also a good sense in which it is logically really
quite simple. Why? What is a %, w!? This short chapter explains.

7.1 Q knows about bounded quantifications

We often want to say that all/some numbers less than or equal to some bound

have a particular property. We can express such claims in formal arithmetics like

Q and PA by using w!s of the shape Vx(x <7 — ¢(x)) and Ix(x < 7 A ¢(x)),

where x < 7 is just short for Iv(v + x = 7) (see §5.7), and 7 can stand in for any

term (not just some numeral) so long as it doesn’t contain v free. It is standard

to further abbreviate such wls by (Vx < 7)p(x) and (Ix < 7)p(x) respectively.
Now note that we have easy results like these:

1. Forany n, Q- Wx({x=0Vx=1V...Vx=n}«+ x <n).
2. Forany n, if Q - o(0) A (1) A ... Ap(R), then Q I (Vx < M)p(X).
3. Forany n, if Q- ¢(0) V(1) V...V ¢(n), then Q - (3x < M)p(X).

Such results show that Q — and hence a stronger theory like PA - ‘knows’ that
bounded universal quantifications (with fixed number bounds) behave like finite
conjunctions, and that bounded existential quantifications (with fixed number
bounds) behave like finite disjunctions.

7.2 Ay wffs

Let’s say that

Defn. 26. An Ly w!is $, il it can be built up from the non-logical vocabulary
of L4 plus < (debned as before), using the familiar propositional connectives,
the identity sign, but only bounded quantibcations.

47

7 Quantifier complexity

So, a $ o w! is just like a quantifier-free L4 w!, except that we are now allowed
the existential quantifiers used in defining occurrences of <, and we can allow
ourselves to wrap up some finite conjunctions into bounded universal quantifi-
cations, and similarly wrap up some finite disjunctions into bounded existential
guantifications.

It should be no surprise to hear this:

Theorem 18. We can electively decide the truth-value of any$; sentence.

We won’t give a full-dress proof. But, roughly speaking, we can unpack bounded
quantifications into conjunctions or disjunctions (perhaps in a number of stages,
if bounded quantifiers are nested one inside another). And then we are left with
an equivalent w! built up using propositional connectives from basic expressions
of the form o = 7 and o < 7 (for quantifier-free o and 7) — and we can compute
the truth values of such basic expressions.

Since we can mechanically decide whether o(f7) when that is $ o, this means
that we can mechanically determine whether a $ 5 open w! ¢(x) is satisfied by
a given number n. In other words, a $ o open w! ¢(x) will express a decidable
property of numbers. Likewise a $ o open w! ¢(x,y) will express a decidable
numerical relation.

Now, since (i) Theorem 13 tells us that even Q can correctly decide all
quantifier-free L 4 sentences, (ii) Theorem 16 tells us that Q also knows about
the relation <, and (iii) Q knows that quantifications with fixed number bounds
behave just like conjunctions/disjunctions, the next result won’t be a surprise
either:

Theorem 19. Q (and hencePA) can correctly decide all$, sentences.

Again, we won’t spell out the argument here (enthusiasts can see the proof of
Theorem 11.2 in IGT2).

7.3 X and II; wffs

We next say that

Defn. 27. An L, w!is # ifitis (or is logically equivalent to) a $, w! preceded
by zero, one, or more unboundeckxistential quantibers. And a w! is % if it is
(or is logically equivalent to) a$ o w! preceded by zero, one, or more unbounded
universal quantibers.

As a mnemonic, it is worth remarking that ‘#’ in the standard label ‘# |’ comes
from an old alternative symbol for the existential quantifier, as in # 2 F'xz — that’s
a Greek ‘S’ for ‘(logical) sum’. Likewise the ‘%’ in ‘%4’ comes from the corre-
sponding symbol for the universal quantifier, as in %z Fx — that’s a Greek ‘P’ for
‘(logical) product’. And the subscript ‘1" in ‘41’ and ‘%’ indicates that we are

48

A remarkable corollary

dealing with wls which start with one block of similar quantifiers, respectively
existential quantifiers and universal quantifiers.!

So a #1 w! says that some number (pair of numbers, etc.) satisfies the decid-
able condition expressed by its $ ¢ core; likewise a %, w! says that every number
(pair of numbers, etc.) satisfies the decidable condition expressed by its $ ¢ core.

To check understanding, pause to make sure you understand why

1. The negation of a $ o w! is still $.
2. A$,w!isalso# ; and %;.

3. The negation of a #; w! is % .

4. The negation of a %, w! is # ;.

(Recall the rules for exchanging the order of quantifiers and negations!) And
let’s note the following easy result:

Theorem 20. Q can prove any true#, sentence (is @,-completeQ).

Proof. Take, for example, a sentence of the type Ixdyp(x,y), where ¢(x,y) is
$. If this sentence is true, then for some pair of numbers m, n, the $ 5 sentence
o(m,n) must be true. But then by Theorem 19, Q proves o(m,n) and hence
IxIyp(x,y), by existential introduction.

Evidently the argument generalizes for any number of initial quantifiers, which
shows that Q proves all truths which are (or are provably-in-Q equivalent to)
some $ o w! preceded by one or more unbounded existential quantifiers. ad

7.4 A remarkable corollary

Our last theorem looks entirely straightforward and unexciting, but it has an
immediate corollary which is much more interesting:

Theorem 21. If T is a consistent theory which includesQ, then every %, sen-
tence that it proves is true.

Proof. Suppose T' proves a false %, sentence ¢. Then —¢ will be a true #,
sentence. But in that case, since T' includes Q and so is ‘#-complete’, T will
also prove —¢, making 7' inconsistent. Contraposing, if 7" is consistent, any %,
sentence it proves is true. O

1 Just for the record, we can keep on going, to consider wifs with greater and greater quantifier
complexity. So, we say a IIa wif is (or is logically equivalent to) one that starts with two
blocks of quantifiers, a block of universal quantifiers followed by a block of existential
quantifiers followed by a bounded kernel. Likewise, a 3o wif is (equivalent to) one that
starts with two blocks of quantifiers, a block of existential quantifiers followed by a block
of universal quantifiers followed by a bounded kernel. And so it goes, up the so-called
arithmetical hierarchy of increasing quantifier complexity. But for our purposes, we won’t
need to consider levels higher up the arithmetical hierarchy.

49

7 Quantifier complexity

Which is, in its way, a quite remarkable observation. It means that we don’t have
to fully believea theory T — i.e. don’t have to accept that all its theorems are
true on the interpretation built into 7"s language — in order to use it to establish
that some %, arithmetic generalization is true.

For example, with some minor trickery, we can state Fermat’s Last Theorem
as a %, sentence. And famously, Andrew Wiles has shown how to derive this
%, sentence from some extremely heavy-duty infinitary mathematics. Now we
see, intriguingly, that that this infinitary mathematics does not need to be true
— whatever exactly that means when things get so very wildly infinitary! It is
enough for Wiles’s proof successfully to establish that Fermat’s Last Theorem
is true that his background theory is consistent Remarkable!

7.5 Intermediate arithmetics

We said at the beginning of the previous chapter that, in moving on from the
very weak arithmetics BA and Q to consider first-order PA, we were jumping
over a whole family of theories of intermediate strength. We can now briefly
describe those intermediate theories: they are the ones we get by restricting the
guantifier complexity of suitable instances of the induction schema.

For example, 1X; is the theory we get by taking the first six axioms of PA
(§6.5) plus every instance of the Induction Schema

[£(0) A Vx(p(x) = ©(SX))] = Vxp(x),

where p(x) is now an open #1 w! of L4 that has ‘x’ free.

There is technical interest in knowing how much a theory like IX; can prove
(as we will see in §16.1). But do such theories have any conceptual interest?
After all, we gave reasons in §6.3 for being generous with induction: we asked, if
©(x) expresses a genuine arithmetical property, how can induction fail for o(x)?

But which L4 open w!s (x) (with one free variable) do express genuine
properties? Previously we took it that they all do (even if, in the general case,
we may not be able to decide whether a given number n has the property or
not): that is why we said that any such w! (x) is ‘suitable’ for appearing in
an instance of the Induction Schema (see §6.3 again). But backtrack a moment
from that cheerful assumption: suppose you are a very stern constructivist who
thinks that an expression ¢(x) only really makes sense if it is $ o and so we can
electively decide whether or not it holds true of a given number (or if it is #
and we can prove it true of a given number when it is). Then you can reasonably
want to restrict the induction principle to suitable instances using only $ o (or
#1) expressions. But it would take us far too far afield to explore the merits of
such proposals here!

50

Interlude

Let’s pause to draw breath and take stock.

1. In Chapter 1 we met the First Incompleteness Theorem in this rough form:
a nice enough theory 7' (which contains the language of basic arithmetic)
will always be negation incomplete — there will always be sentences of basic
arithmetic it can neither prove nor disprove.

2. We then noted in Chapter 2 that we can cash out the idea of being a ‘nice
enough’ theory in two ways. We can assume 7' to be sound Or, retreating
from that semantic assumption, we can require 7' to be a consistent theory
which proves a modest amount of arithmeticGodel himself highlights the
second version.

3. Of course, we didn’t prove the Theorem in either version, there at the very
outset. However, in Chapter 3, we waved an arm rather airily at the basic
strategy that Godel uses to establish the Theorem — namely we ‘arithmetize
syntax’ (i.e. numerically code up facts about provability in ways that we
can express in formal arithmetic) and then construct a Godel sentence that
is (provably) true if and only if is isn’t provable.

4. In Chapter 4 we did a bit better, in the sense that we actually gave a proof
that a consistent, electively axiomatized, su'ciently strong, formal theory
cannot be negation complete.

The argument was revealing, as it shows that we can get incompleteness
results without calling on the arithmetization of syntax and the construc-
tion of Gddel sentences. However, the argument depends on the notion of
‘su”cient strength’ which is defined in terms of the informal notion of a
‘decidable property’ (a theory, remember, is su“ciently strong if it captures
every decidable property of the natural numbers). And the discussion in
Chapter 4 doesn’t explain how we can sharpen up that informal notion of
a decidable property, nor does it explain what a su“ciently strong theory
might look like.

5. We need to get less abstract, and start thinking about specific theories of
arithmetic. In Chapter 5, as a warm-up exercise, we first looked at BA, the
quantifier-free arithmetic of the addition and multiplication of particular

51

Interlude

numbers. This is a negation-complete and decidable theory — but of course
it is only complete, i.e. is only able to decide every sentence constructible
in its language, because its quantifier-free language is indeed so very lim-
ited. However, if we augment the language of BA by allowing ourselves the
usual apparatus of first-order quantification, and replace the schematically
presented axioms of BA with their obvious universally quantified correlates
(and add in the axiom that every number bar zero is a successor) we get
the much more interesting Robinson Arithmetic Q.

Since we are considerably enriching what can be expressed in our arith-
metic language while not greatly increasing the power of our axioms, it is
no surprise that Q is negation incomplete. And we can prove this without
any fancy Godelian considerations. We can easily show, for example, that
Q can’t prove either ¥x(0 + x = x) or its negation. Q, then, is a very weak
arithmetic. Still, it will turn out to be the ‘modest amount of arithmetic’
needed to get a syntactic version of the First Theorem to fly. We announced
(but of course haven’t proved) that Q is in fact su“ciently strong: which
explains why Q turns out to be so interesting despite its weakness.

. In Chapter 6, we then moved on to introduce first-order Peano Arithmetic

PA, which adds to Q a whole suite of induction axioms (every instance of
the Induction Schema). Exploration reveals that this theory, in contrast to
Q, is very rich and powerful. We might, pre-Godel, have very reasonably
supposed that it is a negation-complete theory of the arithmetic of addition
and multiplication. But the theory is still electively axiomatized, and the
First Theorem is going to apply (assuming PA is sound, or is at least
consistent). So PA too will turn out to be negation incomplete.

. There are theories intermediate in strength between Q and PA, theories

which have induction axioms but only for w!s up to some degree of quan-
tificational complexity. We will be interested in one such intermediate the-
ory later in these notes (Chapter 16). But the task of Chapter 7 is just to
explain this notion of quantificational complexity, and in particular explain
what #,; and %; wl!s are.

Which brings us up to the current point in these notes. To give a sense of
direction, let’s next outline where we are going in the next five chapters. (Skip
if you don’t want spoilers!)

52

8. The formal theories of arithmetic that we’ve looked at so far have (at most)

the successor function, addition and multiplication built in. But why stop
there? Even high-school arithmetic acknowledges many more numerical
functions, like the factorial and the exponential.

Chapter 8 describes a very wide class of numerical functions, the so-
called primitive recursive (p.r.) ones. They are a major subclass of the
electively computable functions.

We also define the primitive recursive properties and relations — a nu-

Interlude

merical property/relation is p.r. when some p.r. function can electively
decide when it holds.

9. Chapter 9 then shows that L4, the language of basic arithmetic, can ex-
pressall p.r. functions and relations. Moreover Q and hence PA can capture
all those functions and relations too (i.e. case-by-case prove w!s that as-
sign the right values to the functions for particular numerical arguments).
So Q and PA, despite having only successor, addition and multiplication
‘built in’, can actually deal with a vast range of functions (at least in so far
as they can ‘calculate’ the value of the functions for arbitrary numerical
inputs).

Note the link with our earlier talk about ‘su“ciently strong theories’
(Defn. 19). Those, recall, are theories that can capture all electively de-
cidable properties of numbers. Well, now we are going to show that PA
(indeed, even Q) can capture at least all those electively decidable prop-
erties of numbers which are primitive recursive (a very important class).
And we’ll find that that’s enough for the core Godelian argument to go
through.

10. In Chapter 10 we then introduce again the key idea of the ‘arithmetization
of syntax’ by Godel-numbering which we first met in §§3.3 and 3.4. Focus
on PA for the moment, and fix on a suitable Godel-numbering. Then we
can define various numerical properties/relations such as:

WI!I (n) it n is the code number of a PA-w!;

Sent(n) i! n is the code number of a PA-sentence;

Prf (m,n) i! m is the code number of a PA-proof of the sentence
with code number n.

Moreover — the crucial result — these properties/relations are primitive
recursive. Similar results obtain for any sensibly axiomatized formal theory.

11. Since Prf is p.r., and the theory PA can capture all p.r. relations, there is a
w! Prf(x,y) which captures the relation Prf in the theory. In chapter 11 we
use this fact in constructing a Godel sentence which is true if and only if it
is not provable in PA. We can thereby prove the semantic version of Godel
first incompleteness theorem for PA in something close to Godel’s way,
assuming PA is sound. The result generalizes to other sensibly axiomatized
sound arithmetics that include Q.

12. Then Chapter 12, at last, proves a crucial syntactic version of the First
Incompleteness Theorem, again in something close to Godel’s way.

Now read on ...

53

8 Primitive recursive functions

As we have just noted in the Interlude, the primitive recursive functions form
a large subclass of the electively computable functions. This chapter explains
what they are, and proves some elementary results about them.

8.1 Introducing the primitive recursive functions

Let’s start by revisiting the basic axioms for addition and multiplication which
we adopted formally in Q and PA. Here again is what they say, but now presented
in the style of everyday informal mathematics — for everything in this chapter
belongs to informal mathematics. So, leaving quantifiers to be understood in the
familiar way, and taking the variables to be running over the natural numbers,
the principles are:

c+0=2z
T+ Sy =S(x+y)
rx0=0

rx Sy=(xxy)+z

The first of the pair of equations for addition tells us the result of adding zero.
The second tells us the result of adding Sy (i.e. adding the successor of y) in
terms of the result of adding y. Hence these equations — as we pointed out before
— together tell us how to add any of 0, S0, $S0, SSS0, ..., i.e. they tell us how to
add any number. Similarly, the first of the pair of equations for multiplication
tells us the result of multiplying by zero. The second equation tells us the result
of multiplying by Sy in terms of the result of multiplying by y. Hence these
equations together tell us how to multiply by any of 0,50,550,55S50,..., i.e.
they tell us how to multiply by any number.

Here are two more functions that are familiar from elementary arithmetic. Take
the factorial function y!, where e.g. 4! = 1 x 2 x 3 x 4. Then the factorial function
can be defined by the following two equations:

0l=1

(Sy)! =yt x Sy
The first equation tells us the conventional value of the factorial function for
the argument 0; the second equation tells us how to work out the value of the

54

Introducing the primitive recursive functions

function for Sy once we know its value for y (assuming we already know about
multiplication). So by applying and reapplying the second equation, we can

indeed successively calculate 1!, 2!, 3!, 4! ..., as follows:
I=0x1=1
20=11x2=2
A'=2Ix3=6
4=3x4=24

And so on and on it goes. Our two-equation definition is properly called a defi-
nition because it fixes the value of ‘y!" for all numbers y.

For our next example — this time another two-place function — consider the
exponential function, standardly written in the form ‘z¥’. This can be defined
by a similar pair of equations:

2 =50
25 = (2¥ x x)

Again, the first equation gives the function’s value for a given value of = when
y =0, and - keeping z fixed — the second equation gives the function’s value for
the argument Sy in terms of its value for y. The equations determine, e.g., that
3 =3x3x3x3=38l.

Three comments about our examples so far. (1) Note that in each definition,
the second equation fixes the value of a function for argument Sy by invoking
the value of the same function for argument y. A procedure where we evaluate
a function for one input by calling the same function for a smaller input or
inputs is standardly termed ‘recursive’ — and the particularly simple pattern
we’ve illustrated is called, more precisely, ‘primitive recursive’. So our two-clause
definitions are examples of debnition by primitive recursion.®

(2) Next note, for example, that (Sy)! is defined as 4! x Sy, so it is evaluated by
evaluating y! and Sy and then feeding the results of these computations into the
multiplication function. This involves, in a word, the composition of functions,
where evaluating a composite function involves taking the output(s) from one
or more functions, and treating these as inputs to another function.

(3) Our four examples can be arranged into two short chains of definitions by
recursion and functional composition. Working from the bottom up, addition
is defined in terms of the successor function; multiplication is then defined in
terms of successor and addition; then the factorial (or, in the second chain,
exponentiation) is defined in terms of multiplication and successor.

Here’s another short chain of definitions:

L “Surely, defining a function in terms of that very same function is circular!” But of course,
that isn’t quite what’s happening. We are fixing the value of the function for one input in
terms of its already-settled value for a smaller input: and that is not circular. Still, strictly
speaking, we can ask for a proof confirming that primitive recursive definitions really do
well-define functions: such a proof was first given by Richard Dedekind in 1888.

55

8 Primitive recursive functions

PO)=0
P(Sz) =2«
r=-0==z

x =~ Sy=P(x ~y)
z—yl=(@ =y + =2

‘P’ signifies the predecessor function (with zero being treated as its own prede-
cessor); ‘=’ signifies ‘subtraction with cut-o!’, i.e. subtraction restricted to the
non-negative integers (so m — n is zero if m < n). And |m — n| is the abso-
lute dilerence between m and n. This time, our third definition doesn’t involve
recursion, only a simple composition of functions.

These chains of definitions motivate the following initial way of specifying the
p.r. functions:

Defn. 28. Roughly: a primitive recursive function is one that can be similarly
characterized using a chain of debnitions by recursion and composition, starting
from trivial Oinitial functionsO like the successor function.

That is a quick-and-dirty characterization, but it is enough to get across the
basic idea we need.

8.2 Defining the p.r. functions more carefully

On the one hand, | suppose you really ought to read this section! On the other
hand, donOtget lost in the details. All we are trying to do here is to give a more
careful presentation of the ideas we’ve just been sketching, and to elaborate that
rough Defn. 28.

We have three things to explain more carefully. () We need to tidy up the
idea of defining a function by primitive recursion. (b) We need to tidy up the
idea of defining a new function by composing old functions. And (c) we need
to say more about the ‘starter pack’ of initial functions which we can use in
building up a chain of definitions by primitive recursion and/or composition.

We’ll take these steps in turn.

(@) Consider the recursive definition of the factorial again:
0r=1
(Sy)! =y x Sy

This is an example of the following general scheme for defining a one-place
function f:

f0 =g
F(Sy) = h(y, f(v)

2The basic idea is there in Dedekind and highlighted by Skolem in 1923. But the modern
terminology ‘primitive recursion’ seems to be due to Rdésza Péter in 1934; and ‘primitive
recursive function’ was first used by Stephen Kleene in 1936.

56

Defining the p.r. functions more carefully

Here, ¢ is just a number, while h is a two-place function which — crucially —
we are assumed already to know aboytrior to the definition of f. Maybe that’s
because A is an ‘initial’ function that we are allowed to take for granted; or maybe
it’s because we’'ve already given recursion clauses to define h; or maybe h is a
composite function constructed by plugging one known function into another —
as in the case of the factorial, where h(y, z) = z x Sy (where we take the output
from the successor function as one input into the multiplication function).

Likewise, with a bit of massaging, the recursive definitions of addition, mul-
tiplication and the exponential can all be treated as examples of the following
general scheme for defining two-place functions:

f(z,0) = g(x)
f(x, Sy) = h(zx,y, f(x,y))

where now ¢ is a one-place function, and h is a three-place function, again
functions that we already know about. Three points about this:

i. To get the definition of addition to fit this pattern, with a unary function
on the right of the first equation, we have to take g(x) to be the trivial
identity function I(z) = .

ii. To get the definition of multiplication to fit the pattern, g(x) has to be
treated as the even more trivial zero function Z(z) = 0.

iii. Again, to get the definition of addition to fit the pattern, we have to take
h(x,y, z) to be the function Sz. As this illustrates, we must allow h not
to care what happens to some of its arguments, while operating on some
other argument(s). The conventional way of doing this is to help ourselves
to some further trivial identity functions that serve to select out particular
arguments. For example, the function I3 takes three arguments, and just
returns the third of them, so I3(z,y,z) = 2. Then, in the definition of
addition, we can put h(z,y, z) = SI3(z,y, 2), so h is defined by composition
from initial functions which we can take for granted.

We can now generalize the idea of a definition by recursion from the case
of one-place and two-place functions to cover the case of many-place functions.
There’s a standard notational device that helps to put things snappily: we write
Z as short for the array of k variables z1, zo, ...,) (taking the relevant & to be
fixed by context). Then:

Defn. 29. Suppose that the following holds:
f(#,0) = g(2)
[, 8y) = h(Z,y, f(Z,y))

Then f is debPned fromg and h by primitive recursion.

This covers the case of one-place functions f(y) like the factorial if we allow &
to be empty, in which case ¢(Z) is a ‘zero-place function’, i.e. a constant.

57

8 Primitive recursive functions

(b) Now to tidy up the idea of definition by composition. The basic idea, to
repeat, is that we form a composite function f by treating the output value(s) of
one or more given functions g, ¢/, ¢”, ..., as the input argument(s) to another
function h. For example, we set f(x) = h(g(x)). Or, to take a slightly more
complex case, we could set f(z,y,z) = h(g(x,y), ¢'(y, 2)).

There’s a number of equivalent ways of covering the manifold possibilities of
compounding multi-place functions. But one standard way is to define what we
might call one-at-a-time composition (where we just plug one function g into
another function h), thus:

Defn. 30. If g(¥) and h(Z,u, 2) are functions B with Z and z" possibly empty
b then f is defined by composition by substituting g into A just if f(Z,y,7) =
h(Z, g(), Z)-

We can then think of generalized composition — where we plug more than one
function into another function — as just iterated one-at-a-time composition. For
example, we can substitute the function g(z, y) into h(u, v) to define the function
h(g(x,y),v) by composition. Then we can substitute ¢'(y, z) into the defined
function h(g(z,y),v) to get the composite function h(g(x,), ¢'(y, z)). (No one
promised that these details were going to be exciting!)

(c) Sofar, so good. Now, the quick-and-dirty Defn. 28 tells us that the primitive
recursive functions are built up by recursion and composition, beginning from
some ‘starter pack’ of trivial basic functions. But which functions are they? In
fact, we’ve met all the ones we need:

Defn. 31. The initial functions are the successor function.S, the zero function
Z(x) =0 and all the k-place identity functions, I¥(x1,2,...,7x) = ; for each
k, and for eachs, 1 < < k.

These identity functions are also often called projection functions (they ‘project’
the vector with components x4, s, ..., z; onto the i-th axis).

Let’s now put everything together. We informally defined the primitive recursive
(henceforth, p.r.3) functions as those that can be defined by a chain of definitions
by recursion and composition. Working backwards down a definitional chain, it
must bottom out with members of an initial ‘starter pack’ of trivially simple
functions. Or, working in the opposite direction, from the bottom up, we can
give this more formal characterization of the p.r. functions:

Defn. 32. The p.r. functions are the following:

1. The initial functions S, Z, and I are p.r.;

2. if f can be debned from the p.r. functiong; and h by composition, substi-
tuting ¢ into A, then f is p.r;

3Terminology alert: some authors writing in this area use ‘p.r.” as short for partial recursive
— a quite different notion!

58

How to prove a result about all p.r. functions

3. if f can be debned from the p.r. functiong; and h by primitive recursion,
then f is p.r.;

4. nothing else is a p.r. function.

(We allow ¢ in clauses (2) and (3) to be zero-place, i.e. be a constant.)

So a p.r. function f is one that can be specified by a chain of definitions by
recursion and composition, leading back ultimately to initial functions. Let’s
say:

Defn. 33. A definition chain for the p.r. function f is a sequence of functions
fo, fi, f2, ..., f where eachf; is either an initial function or is debned from
previous functions in the sequence by composition or recursion, ang, = f.

Then every p.r. function is required to have a definition chain in this sense (the
chain need not be unique, but the function must have at least one to be p.r.) —
which sharpens the informal characterization Defn. 28 which we gave at the end
of the previous section.

8.3 How to prove a result about all p.r. functions

The point that every p.r. function has a definition chain means that there is a
simple method of proving that every p.r. function shares some feature. Suppose
that, for some given property P, we can show the following:

P1. The initial functions have property P.

P2. If the functions g and h have property P, and f is defined by composition
from g and A, then f also has property P.

P3. If the functions g and h have property P, and f is defined by primitive
recursion from g and h, then f also has property P.

Then P1, P2, and P3 together su“ce to establish that all primitive recursive
functions have property P.

Why? Well, trek along a definitional chain for a p.r. function f. Each initial
function we encounter has property P by P1l. By P2 and P3, each definition
by recursion or composition which is used in the chain takes us from functions
which have property P to another function with property P. So, every function
we define as we go along has property P, including the final target function f.

In sum, then: to prove that all p.r. functions have some property P, it su'ces
to prove the relevant versions of P1, P2 and P3.

For a simple first example, take the property of being a total function of the
natural numbers, i.e. being a function which outputs a natural number value for
any given numerical input. (Example: the function z? defined over the natural
numbers is total — give it a natural number, and it outputs a natural number;
but the function /z defined over the natural numbers is only partial — for input
4 it outputs 2; but 5 has no square root in the natural numbers, and so /5 has

59

8 Primitive recursive functions

no value.) Now, the initial functions are, trivially, total functions of numbers,
defined for every numerical argument; also, primitive recursion and composition
evidently both build total functions out of total functions. Which means that all
p.r. functions are total functions, defined for all natural number arguments.

8.4 The p.r. functions are computable

We now show that every p.r. function is electively computable. Given the general
strategy just described, it is enough to show these:

C1. The initial functions are computable.

C2. If f is defined by composition from computable functions g and h, then f
is also computable.

C3. If f is defined by primitive recursion from the computable functions g and
h, then f is also computable.

But C1 is trivial: the initial functions S, Z, and IF are all electively computable
by utterly trivial algorithms. And C2, the composition of two computable func-
tions g and A is computable (you just feed the output from whatever algorithmic
routine evaluates g as input into the routine that evaluates h).

To illustrate C3, return once more to our example of the factorial. Here is its
p.r. definition again:

=1
(Sy)! =y x Sy

The first clause gives the value of the function for the argument 0; then — as
we said — you can repeatedly use the second recursion clause to calculate the
function’s value for SO, then for SS0, SSS0, etc. So the definition encapsulates
an algorithm for calculating the function’s value for any number, and corresponds
exactly to a certain simple kind of computer routine. And obviously the argument
generalizes to establish C3.

It is worth comparing the recursive definition of the factorial with the following
schematic program which takes a number n as input:

1. fact:=1

2. Fory=0ton-—-1

3. fact := (fact x Sy)
4. Loop

Here, fact is a register that we initially prime with the value of 0!. Then the
program starts looping,* updating the contents of fact on each iteration. And
the crucial thing about executing this kind of OforQ loojs that the total number

4Fine print: in the special case when n = 0, i.e. when faced with the instruction ‘For y = 0
to $ 1, do some stuff’, the computer does zero loops — or, if you like, just skips the looping
procedure.

60

The p.r. functions are computable

of iterations to be run through is bounded in advance: you number the loops
from 0, and after executing the loop, you increment the counter by one on each
cycle until you exceed the given bound and exit. So in this case, on loop number
k the program replaces the value in the register with Sk times the previous value
(we’ll assume the computer already knows how to find the successor of k£ and can
do multiplication). When the program exits the loop after a total of n iterations,
the value in the register fact will be n!.

More generally, for any one-place function f defined by recursion in terms of
g and the computable function &, the same program structure always does the
trick for calculating f(n). Thus compare the second clause of

f0) =g
F(Sy) = h(y, f(¥))

with the corresponding program which takes input n:

1. func:=yg

2. Fory=0ton-1

3. func := h(y, func)
4. Loop

Given that h is computable, the value of f(n) will be computable using this
bounded ‘for’ loop that terminates with the required value in the register func.

Similarly, of course, for many-place functions. For just one example, take the
recursive clause of the definition of the addition function: =z + Sy = S(x + y).
There is a corresponding program which takes as input numbers m and n and
terminates with the sum m + n in the register add:

1. add:=m

2. Fory=0ton-1
3. add := S(add)
4. Loop

In other words, the elect of the definition by recursion can be computed by a
bounded “for’ loop.

Now, our mini-program for the factorial calls the multiplication function which
can itself be computed by a similar ‘for’ loop (invoking addition). And addition as
we have just seen can be computed by another ‘for’ loop (invoking the successor).
So reflecting the downward chain of recursive definitions

factorial = multiplication = addition = successor

there’s a program for the factorial containing nested bounded ‘for’ loops, which
ultimately calls the primitive operation of incrementing the contents of a register
by one (or other operations like setting a register to zero, corresponding to the
zero function, or copying the contents of a register, corresponding to an identity
function).

The point obviously generalizes, giving us

61

8 Primitive recursive functions

Theorem 22. Primitive recursive functions are electively computable by a pro-
gram which invokes a series of (possibly nested) bounded Ofor® loops.

And the crucial thing here, a point we will return to, is that the required looping
procedures are each iterated a maximum number of terms, set in advance (though
we can allow early exits!). Contrast the open-ended searches involved in ‘do while’
or ‘do until’ procedures, where we keep on looping around for as long as it takes,
while some condition holds, or until some other condition is satisfied.

The converse to the last theorem is also true. Suppose we have a program
which sets a value for f(0), and then goes into a bounded ‘for’ loop which
computes the value of a one-place function f(n) (for n > 0), a loop which calls
on an already-known function which is used on the k + 1-th loop to fix the value
of f(Sk) in terms of the value of f(k). This plainly corresponds to a definition
by recursion of f. And generalizing,

Theorem 23. If a function can be computed by a program using just Ofor® loops
as its main programming structure with the programOs Obuilt inQ functions all
being p.r. B then the newly debned function will also be primitive recursive.

This gives us a quick way of convincing ourselves that a new function is p.r.:
sketch out a routine for computing it and check that it can all be done with
a succession of (possibly nested) bounded ‘for’ loops which only invoke already
known p.r. functions, and without recourse to any open-ended searches. Then
the new function will be primitive recursive.

For example, take the two-place function gcd(z, y) which outputs the greatest
common divisor of the two inputs. Evidently, a bounded search through cases is
enough to do the trick: at its crudest and most ine"cient, we can look in turn at
all the numbers up to (and including) the smaller of z and y and see if it divides
both. That assures us that gcd(x, y) is p.r. without going through the palaver of
actually writing down a suitable definition chain.

8.5 Not all computable numerical functions are p.r.

We have seen that any p.r. function is electively computable. And most of the
ordinary computable numerical functions you already know about from elemen-
tary maths are in fact primitive recursive. But not all electively computable
numerical functions are primitive recursive.

In this section, we first make the claim that there are computable-but-not-p.r.
numerical functions look plausible. Then we’ll cook up an example.

First, then, some plausibility considerations. We’ve just seen that the values of
a given primitive recursive function can be computed by a program involving
bounded ‘for’ loops as its main programming structure. Each loop goes through
a specified number of iterations, set in advance. However, we do allow procedures
involving open-ended searches to count as elective computations, even if there
is no prior bound on the length of search (so long as we know the search will

62

Not all computable numerical functions are p.r.

terminate in a finite number of steps). We made essential use of this permission
when we showed that negation-complete theories are decidable. We allowed the
process enumerate the theorems and wait to see which a@f or —p turns up to
count as a computational decision procedure.

Standard computer languages of course have programming structures which
implement just this kind of unbounded search. Because, in one form or another,
as well as bounded ‘for’ loops, they allow open-ended ‘do until’ loops (or equiv-
alently, ‘do while’ loops). In other words, they allow some process to be iterated
until a given condition is satisfied — where no prior limit is put on the number
of iterations to be executed®

If we count what are presented as unbounded searches as computations, then it
looks very plausible that not everything computable will be primitive recursive.

True, that is as yet only a plausibility consideration. Our remarks so far leave
open the possibility that computations can always somehow be turned into pro-
cedures using ‘for’ loops with a bounded limit on the number of steps. But in
fact we can now show that isn’t the case:

Theorem 24. There are electively computable numerical functions which arenOt
primitive recursive.

Proof. The set of p.r. functions is electively enumerable. That is to say, there
is an elective way of numbering o! functions fy, f1, fo, ..., such that each of
the f; is p.r., and each p.r. function appears somewhere on the list.

This holds because, by definition, a p.r. function is defined by recursion or
composition from other functions which are defined by recursion or composition
from other functions which are defined . .. ultimately in terms of some primitive
starter functions. So choose some standard formal specification language for
representing these chains of definitions. Then we can electively generate ‘in
alphabetical order’ all possible strings of symbols from this language; and as we
go along, we select the strings that obey the rules for being a definition chain
for a p.r. function. That generates a list which electively enumerates the p.r.
functions, repetitions allowed.

Now consider the following table:

5Programming languages differ as to whether they explicitly mark the difference with distinct
instructions, ‘for’ as against ‘do while’/‘do until’. But the point of principle remains: there
is a difference between cases where the bound to a looping procedure is set in advance, and
cases where the procedure is allowed to carry on for an indefinite number of iterations.

63

8 Primitive recursive functions

fo | fo©) fo(1) fo(2) fo(3)
fir | 1O AQ) 1D [B)
f2 | 0 (1) f2() f2(3)
fs | f5(0) fs() f3(2) f5(3)

pY

Down the table we list o! the p.r. functions f,, f1, f2, An individual row
then gives the values of a particular f, for each argument. Let’s define the cor-
responding diagonal function, by putting 6(n) = f,,(n)+ 1. To compute 5(n), we
just run our elective enumeration of the recipes for p.r. functions until we get to
the recipe for f,,. We follow the instructions in that recipe to evaluate that func-
tion for the argument n. We then add one. Each step is entirely mechanical. So
our diagonal function is electively computable, using a step-by-step algorithmic
procedure.

By construction, however, the function § can’t be primitive recursive. For
suppose otherwise. Then § must appear somewhere in the enumeration of p.r.
functions, i.e. be the function f,; for some index number d. But now ask what the
value of 4(d) is. By hypothesis, the function ¢ is none other than the function
fa, 50 6(d) = fq(d). But by the initial definition of the diagonal function, §(d) =
fa(d) + 1. Contradiction.

So we have, as they say, ‘diagonalized out’ of the class of p.r. functions to
define a new function ¢ which is still electively computable but not primitive
recursive. a

‘But hold on! Why is § not a p.r. function?” Well, consider evaluating §(n) for
increasing values of n. For each new argument, we will have to evaluate a dilerent
function f,, for that argument (and then add 1). We have no reason to expect
there will be a nice pattern in the successive computations of all the dilerent
functions f,, which enables them to be wrapped up into a single p.r. definition.
And our diagonal argument in elect shows that this can’t be done. ©

6To expand that thought a bit, note that in the algorithm to compute a p.r. function, the
nesting depth of the for-loops is fixed. But in order to compute the diagonal function § we
have to be able to evaluate in turn the n-th p.r. function for the input n, and as we go
down the list we get functions whose algorithms will have loops of varying depths — so our
computation of §(n) will involve going through a nest of loops of varying depth depending
on the input n. (I owe that observation to Henning Makholm.)

64

Defining p.r. properties and relations

8.6 Defining p.r. properties and relations

We have defined the class of p.r. functions. Finally in this chapter, we extend
the scope of the idea of primitive recursiveness and introduce the ideas of p.r.
decidable (numerical) propertiesand relations.

Now, quite generally, we can tie together talk of functions and talk of prop-
erties and relations by using the notion of a characteristic function:

Defn. 34. The characteristic function of the numerical property P is the one-
place function cp such that if m is P, then c¢p(m) = 0, and if m isnOtP, then
cp(m) = 1.

The characteristic function of the two-place numerical relation R is the two-place
function cg such that if m is R to n, then cg(m,n) =0, and if m isnOtR to n,
then cg(m,n) = 1.

And similarly for many-place relations. The choice of values for the characteristic
function is, of course, entirely arbitrary: any pair of distinct numbers would do.
Our choice is supposed to be reminiscent of the familiar use of 0 and 1, one way
round or the other, to stand in for true and false And our selection of 0 rather
than 1 for true follows Godel.

The numerical property P partitions the numbers into two sets, the set of num-
bers that have the property and the set of numbers that don’t. Its corresponding
characteristic function cp also partitions the numbers into two sets, the set of
numbers the function maps to the value 0, and the set of numbers the function
maps to the value 1. And these are the same partition. So in a good sense, P
and its characteristic function cp contain exactly the same information about
a partition of the numbers: hence we can move between talk of a property and
talk of its characteristic function without loss of information. Similarly, of course,
for relations (which partition pairs of numbers, etc.). And we can use this link
between properties and relations and their characteristic functions in order to
carry over ideas defined for functions and apply them to properties/relations.

For example, without further ado, we now extend the idea of primitive recur-
siveness to cover properties and relations:

Defn. 35. A p.r. decidable property is a property with a p.r. characteristic func-
tion, and likewise a p.r. decidable relation is a relation with a p.r. characteristic
function.

By way of casual abbreviation, we’ll fall into saying that p.r. decidable properties
and relations are themselves (simply) p.r.

For a quick example, consider the property of being a prime number. Take
the characteristic function pr(n) which has the value 0 when n is prime, and 1
otherwise. Now just note that we can evidently compute pr(n) just using ‘for’
loops (we just do a bounded search through numbers less than n — indeed, no
greater than /n — and if we find a divisor of n other than 1, return the value 1,
and otherwise return the value 0). So the property of being prime is p.r.

65

9 Expressing and capturing the
primitive recursive functions

Addition can be defined in terms of repeated applications of the successor func-
tion. Multiplication can be defined in terms of repeated applications of addition.
The exponential and factorial functions can be defined, in dilerent ways, in terms
of repeated applications of multiplication. There’s already a pattern emerging
here! And the main task of the last chapter was to get clear about this pattern.

So first we said more about the idea of defining one function in terms of
repeated applications of another function. Tidied up, that becomes the idea
of debning a function by primitive recursion (Defn. 29). Then we explained the
idea of giving a definitional chain which defines a function by primitive recursion
and/or composition from other functions which we define by primitive recursion
and/or composition from other functions, and so on down, until we bottom out
with the successor function and other trivia. Tidied up, this gives us the idea of
a primitive recursive function, i.e. one that can be characterized by such a chain
of definitions (Defn. 32).

We noted three key facts:

1. Every p.r. function is electively computable — moreover it is computable
using only ‘for’ loops, without open-ended searches using ‘do until’ loops.
That’s Theorem 22.

2. Conversely, if a numerical function can be computed from the starter pack
of simple p.r. functions using only “for’ loops, then it too is primitive re-
cursive. That’s Theorem 23.

3. But not every intuitively computable numerical function is primitive re-
cursive. That’s Theorem 24.

So the situation is now this. In Chapters 5 and 6, we introduced some formal
arithmetics with just three functions — successor, addition, multiplication — built
in. But we have now reminded ourselves that ordinary informal arithmetic talks
about many more elementary computable functions like the exponential, the
factorial, and so on: and we generalized the sort of way these functions can be
defined to specify the whole class of primitive recursive functions. A gulf seems
to have opened up, then, between the modesty of the resources of our formal

66

Bridging the divide

theories (including the strongest so far, PA) and the richness of the world of p.r.
functions (and we know that those aren’t even all the computable arithmetical
functions).

9.1 Bridging the divide

The aim of this chapter is to show that the theories Q and PA, despite the
modesty of their built-in resources, reach a lot further than you might expect.
In particular, we arrive at two key results, Theorems 26 and 28. The first will
tell us that

The languageL 4 can express all primitive recursive functions.

And there’s more: looking at the proof of that result we find that in fact L4 can
express any p.r. function using a #; w! — i.e. by using a w! of low quantifier
complexity. The second of our theorems then tells us that

The theory Q B and hence any stronger theory lik€A D can capture
any p.r. function.

Again, the capturing can be done by using #; w!s.

Now, the ideas involved in proving these two theorems are not particularly
di"cult. But working through the proofs takes a bit of care and patience. We’'ll
give most of a proof of Theorem 26, but only outline what it takes to prove
Theorem 28. And if you are prepared to take these theorems more or less on
trust, then it will do little harm to skim and skip.

9.2 L4 can express the factorial function

In this section, as a warm-up exercise, we are going to show that L4 — despite
having only successor, addition and multiplication built in — can in fact express
the factorial function. That is to say, we can construct an L, w! F(x,y) such
that, for any particular m and n, F(m,n) if and only if n = ml.

Then in the next section we’ll use the same key trick in showing that L4 can
express any p.r. function at all. But it will be much easier to follow the general
argument if you first meet the ‘S-function’ trick deployed in a simple particular
case.

Consider, then, the primitive recursive definition of the factorial function again:

ol=1
(S =2'x Sz

Now, think of this definition in the following way: for any =z, it tells us how to
construct a sequence of numbers 0!,1!, 21, ... !, where we move from the i-th
member of the sequence (counting from zero) to the next by multiplying by Si.
Or putting it a bit more abstractly, suppose that for numbers = and y,

67

9 Expressing and capturing the primitive recursive functions

1. There is a sequence of numbers kg, k1,...,k; such that: ki, = 1, and if
1 < x then kg; = k; x Si, and k, = y.

Then this is equivalent to saying that y = z!.

So the question of how to reflect the p.r. definition of the factorial inside L 4
can be parlayed into the following question: how can we express facts about Pnite
sequences of numbersising the limited resources of L 4?

Use numerical codes! Suppose we can wrap up a finite sequence into a single code
number ¢, and then have a two-place decoding function call it simply decode
such that if you give decodethe code ¢ and the index 4, the function spits out
the i-th member of the sequence which ¢ codes. In other words, suppose that,
when c is the code number for the sequence kg, k1, . . ., k., then decoddc, i) = k;.

If we can find such a coding scheme, then we can rewrite (1) as follows,
talking about a code number c instead of the sequence kg, k1, . . ., ks, and writing
decoddc, 7) instead of k;:

2. There is a code number ¢ such that: decoddc,0) = 1, and if ¢ < x then
decoddc, Si) = decoddc, i) x Si, and decod€c, x) = y.

This way, if a suitable decodefunction can indeed be expressed in L4, then we
can define the factorial in L 4. Great! So can we do this coding trick?

To link up with Gddel’s own version of the trick, let’s liberalize our notion of
coding/decoding just a little to allow decoding functions which take two code
numbers ¢ and d, and an index number 4, as follows:

A three-place decoding function is a function decod€c, d, i) such that,

for any finite sequence of natural numbers kg, k1, ko, . . ., k,, thereis a
pair of code numbers ¢, d such that, for every i < n, decoddc, d,) =
k;.

A three-place decoding-function will obviously do just as well as a two-place
function to help us express facts about finite sequences.

Even with this liberalization, though, it still isn’t at all obvious how to define
a decoding function in terms of the functions built into basic arithmetic. But
Gddel neatly solved the problem with his g-function. Put

B(c, d, i) =qor the remainder left when c is divided by d(i + 1) + 1.
Then we have

Theorem 25. For any bnite sequence of numbergg, k1, ..., k,, we can bnd a
suitable pair of numbersc, d such that fori < n, 8(c,d,?) = k;.

This claim should look intrinsically plausible. As we divide ¢ by d(i + 1) + 1,
then for dilerent values of i (0 < i < n) we’ll get a sequence of n+ 1 remainders.
Vary c and d, and the sequence of remainders will vary. The permutations as we
vary ¢ and d without limit appear to be simply endless. We just need to check,

68

L 4 can express all p.r. functions

then, that appearances don’t deceive, and we can always find a (big enough) ¢
and a (smaller) d which makes the sequence of remainders match a given n + 1-
term sequence of numbers (mathematical completists: see IGT2, §15.2, fn. 4 for
a proof that this works!)

But now reflect that the concept of a remainder on division can be elementarily
defined in terms of multiplication and addition: the remainder when « is divided
by b (with b < a) is y, when there is some number « (no greater than a) such
that a = b x u + y, where y < b.

So consider the following open w!:

B(c,d,i,y) =der (Gu <)fc = {S(d x Si) x u} +y Ay < (d x Si)].

If you think about it, this expresses our three-place Godelian s-function in L 4
(for remember, we can define ‘<’ in L4).

OK: we said that y = 2! just in case

1. There is a sequence of numbers kg, k1, ..., k, such that: k, = 1, and if
i < x then kg; = k; x Si, and k, = y.

And we now know we can reformulate this as follows:

2'. There is some pair of code numbers c,d such that: 8(c,d,0) = 1, and if
1 < z then B(c,d, Si) = 8(c,d, i) x Si, and B(c,d,x) = y.

But we’ve seen that the S-function can be expressed in L4 by the open w! we
abbreviated B. So we can render (2') into L 4 as follows:

3. 3c3d{B(c, d,0,50) A
(Vi < X)[i #x = Ivaw{(B(c,d,i,v) A B(c,d,Si,w)) Aw =v x Si}] A
B(C7d7x7 y)}.

Abbreviate all that by ‘F(x,y)’, and we’ve arrived. For this evidently expresses
(2") which is equivalent to (1) and so expresses the factorial function. Neat!

9.3 L, can express all p.r. functions

Using the g-function trick again, we can now generalize to show that L, can
express any p.r. function.

We already know from §8.3 the standard strategy for showing that something
is true of all p.r. functions. So suppose that the following three propositions are
all true:

El. L4 can express the initial functions. (See Defn. 31.)

E2. If L4 can express the functions g and h, then it can also express a function
f defined by composition from g and h. (See Defn. 30.)

E3. If L4 can express the functions g and h, then it can also express a function
f defined by primitive recursion from g and h. (See Defn. 29.)

69

9 Expressing and capturing the primitive recursive functions

Then by the argument of §8.3, those assumptions will be enough to establish our
desired general result. So how can we prove (E1) to (E3)?

Proof of E1. Just look at cases. The successor function Sx = y is of course
expressed by the open w! Sx =y.
The zero function, Z(x) = 0is expressed by the w! Z(x,y) =get (x =x Ay = 0).
Finally, the three-place function I3(x,y,z) = y, to take just one example of
an identity function, is expressed by the w! I3(x,y,z, u) =4t y = u (or we could
use (x=xAy=uAz=z) if we'd like x and z actually to appear in the w!).
Likewise for all the other identity functions. O

Proof of E2. Suppose, to take a simple example, that g and / are one-place func-
tions, expressed by the w!s G(x,y) and H(x,y) respectively. Then, the function
f(x) = h(g(z)) is evidently expressed by the w! 3z(G(x,z) A H(z,y)).

For suppose g(m) = k and h(k) = n, so f(m) = n. Then by hypothesis G(m, k)
and H(k,n) will be true, and hence 3z(G(m,z) A H(z,n)) is true, as required.
Conversely, suppose 3z(G(m,z) A H(z,n)) is true. Then since the quantifiers
run over numbers, (G(m, k) A H(k,®)) must be true for some k. So we’ll have
g(m) = k and h(k) = n, and hence f(m) = h(g(m)) = n as required.

Other cases where g and/or h are multi-place functions can be handled simi-
larly. a

Proof of E3. The tricky case! We need to show that we can use the same -
function trick and prove more generally that, if the function f is defined by
recursion from functions g and ~ which are already expressible in L 4, then f is
also expressible in L 4.

We are assuming that

f(&,0) = g()
(&, Sy) = Mz, y, f(Z,9))-

(Remember, & indicates some variables being ‘carried along for the ride’, that
don’t change in the course of the recursion that defines f(Z, Sy) in terms of
[(Z,9).)

This definition amounts to fixing the value of f(Z,y) = z thus:

1. There is a sequence of numbers ko, k1, ..., k, such that: ky = ¢g(2), and if
i <y then ki, = h(Z,u, k;), and k, = z.

So using a three-place s-function again, that comes to

2. There is some ¢, d, such that: 5(c,d,0) = g(Z), and if i < y then
B(c, d, Si) = h(Z, i, B(c, d,4)), and B(c, d,y) = 2.

Suppose we can already express the n-place function g by a (n + 1)-variable
expression G, and the (n+2)-variable function A by the (n+3)-variable expression

H. Then — using ‘X’ to indicate a suitable sequence of n variables — (2) can be
rendered into L4 by

70

Canonical wffs for expressing p.r. functions are #,

3. 3c3d{3K[B(c, d, 0, k) A G(Z,K)] A
i <yl #y = IIw{(B(c,d,i,v) A B(c,d,Si,w)) AHKX,i,v,w)}] A
B(c,d,y,2)}.

Abbreviate this defined w! as ¢(X,y,z); it is then evident that ¢ will serve to
express the p.r. defined function f. Which gives us the desired result E3. a

So, we’ve shown how to establish each of the claims E1, E2 and E3. We therefore
get our desired

Theorem 26. The languageL 4 can express all primitive recursive functions.

Proof. For any p.r. function f, there is a sequence of functions fy, f1, fo,..., fx
where each f; is either an initial function or is constructed out of previous func-
tions by composition or recursion, and f; = f. Corresponding to that sequence
of functions we can write down a sequence of L4 w!s which express those func-
tions. We write down the E1 expression corresponding to an initial function.
If f; comes from two previous functions by composition, we use an existential
quantifier construction as in E2 to write down a w! built out of the w!s express-

ing the two previous functions. And if f; comes from two previous functions by
recursion, we use the g-function trick and write down a (3)-style expression built
out of the wls expressing the two previous functions. |

9.4 Canonical wffs for expressing p.r. functions are 33;

Let’s say that

Defn. 36. An L4 w! canonically expresses the p.r. function f if it recapitulates
a debnitional chain for f by being constructed in the manner described in the
proof of Theorem 26.

We can express a given p.r. function f by other w!s too (if only by adding
redundant clauses): but it is the canonical ones from which we can read o! a full
definition for f which will interest us the most.

Now, a canonical w! which reflects a full definition of f is built up starting
from w!s expressing initial w!s. Those starter w!s are $ (w!s — see the Proof
for E1 — and hence #;.

Suppose g and h are one-place functions, expressed by the #; wls G(x,y)
and H(x,y) respectively. The function f(x) = h(g(z)) is expressed by the w!
Jz(G(x,z) A H(z,y)) — as in the Proof for E2 — which is #; too. For that is
equivalent to a w! with the existential quantifiers pulled from the front of the
#, w!s G and H out to the very front of the new w!. Similarly for other cases
of composition.

Finally, look at the case where f is defined from g and & by primitive recursion,
where g and h are p.r. functions which can be expressed by # 1 w!s. Then f can
be expressed by a w! of the kind (3) — as in our proof of E3. And this too is # ;.
For B is $ o: and (3) is equivalent to what we get when we drag all the existential

71

9 Expressing and capturing the primitive recursive functions

guantifiers buried at the front of each of B, G and H to the very front of the
w!. (Yes, dragging existentials past a universal is usually wicked! — but the only
universal here is a bounded universal, which is ‘really’ just a tame conjunction,
and simple tricks allow us to get the existentials all at the front. For details, see
IGT2.))

So in fact our recipe for building a canonical w! stage by stage in fact takes
us from #, w!s to # ; wls. Which yields the stronger

Theorem 27. L, can express any p.r. functionf by a#; w! which recapitu-
lates a full debnitional chain for f.

9.5 Q can capture all p.r. functions

We have shown that the language of the theory Q can expressall p.r. functions
using #; w!s. We now want to show that this theory (and hence any stronger
one) can also capture all those functions using #; w!s.

But hold on! We haven’t yet said what it is for a theory to capture a function.
So we first need to explain that.

Recall our earlier account of what it is to capture a property or relation. In
particular, recall

Defn 18. The theory T' captures the two-place numerical relationR by the open
w! o(x,y) il, for any m,n,

i. if m has the relation R to n, then T - ¢(m, 1),

ii. if m does not have the relationR to n, then T'+ —p((m, n).

Thinking of f(m) = n as stating a two-place relation between m and n we might
expect the definition for capturing a function to have the same shape:

Defn. 37. The theory T captures the one-place functionf by the open w! ¥ (x,y)
i, forany m,n,

i. if f(m) =n, then T + ¢(m,n),

i. if f(m) # n, then T + —p(m, 7).

But (for technical reasons we are not going to fuss about here) it turns out to
be useful to add a further requirement

i . T+ Jlyy(m,y).

In other words, T" also ‘knows’ that) is functional (associates a number to just
one value).

Our target, then, is the following theorem:

Theorem 28. The theory Q can capture any p.r. function by a#; w!.

Proof outline. There’s more than one route to this theorem. But the conceptu-
ally simplest is to use again the same overall strategy we used in proving that
Q’s language can express every p.r. function. Suppose then that we can prove

72

Expressing/capturing properties and relations

C1. Q can capture the initial functions.

C2. If Q can capture the functions g and h, then it can also capture a function
f defined by composition from g and h.

C3. If Q can capture the functions g and h, then it can also capture a function
f defined by primitive recursion from g and h.

Then it follows that Q can capture any p.r. function.

So how do we prove C1? We just check that the formulas which we said in
§9.3 expressthe initial functions in fact serve to capture the initial functions in
Q.

How do we prove C2? Suppose g and h are one-place functions, captured
by the w!s G(x,y) and H(x,y) respectively. Then we prove that the function
f(x) = h(g(x)) is captured by the w! Jz(G(x,z) A H(z,y)). We can generalize
the result.

And how do we prove C3? This is the tedious case that takes hard work, done
in gory detail in IGT2 ! We need to show that (a tweaked version of) formula B
not only expresses but captures Godel’s s-function. And then we use that fact to
prove that if the n-place function g is captured by a (n + 1)-variable expression
G, and the (n+2)-variable function & by the (n+3)-variable expression H, then a
w! built to the pattern of (3) in §9.3 captures the function f defined by primitive
recursion from g and h. Not surprisingly, details get messy (not di"cult, just
messy).

So take a definitional chain for defining a p.r. function. Follow the step-by-step
instructions implicit in §9.3 about how to build up a canonical w! which in elect
recapitulates that recipe, tweaking the treatment of the S-function. You’'ll get a
w! that captures the function in Q (and in any stronger theory which contains
the language of basic arithmetic). Moreover the w! in question will again be #
by the same argument as before. a

9.6 Expressing/capturing properties and relations

Just a brief coda, linking what we’ve done in this chapter with the last section
of the previous chapter.

We said in Defn. 34 that the characteristic function cp of a monadic numerical
property P is defined by setting cp(m) = 0 if m is P and cp(m) = 1 otherwise.
And a property P is said to be p.r. decidable if its characteristic function is p.r.

Now, suppose that P is p.r.; then cp is a p.r. function. So L4 can express
cp by a two-place #; w! cp(x,y). So if m is P, i.e. cp(m) = 0, then cp(m,0)
is true. And if m is not P, i.e. cp(m) # 0, then cp(m,0) is not true. Hence,
by the definition of expressing-a-property, the w! cp(x,0) serves to express the
p.r. property P. The point generalizes from monadic properties to many-place
relations. So as an easy corollary of Theorem 27 we get:

Theorem 29. L, can express all p.r. decidable properties and relations, again
using #1 wls.

73

9 Expressing and capturing the primitive recursive functions

Similarly, suppose again that the monadic property P is p.r. so cp is a p.r.
function. So Q can capture cp by a two-place #; w! cp(x,y). So if m is P,
i.e. cp(m) = 0, then Q F cp(m,0). And if m is not P, i.e. cp(m) # 0, then
Q + —cp(m,0). Hence, by the definition of capturing-a-property, the w! cp(x,0)
serves to capture the p.r. property P in Q. The point trivially generalizes from
monadic properties to many-place relations. So as an easy corollary of Theo-
rem 28 we get:

Theorem 30. Q can capture all p.r. decidable properties and relations, again
using #, wis.

74

10 The arithmetization of syntax

Elementary arithmetic deals with many more functions than the successor, ad-
dition and multiplication functions initially built into L 4, the shared language
of Q and PA. But in Chapter 9, we showed that L, can in fact expressall
the p.r. functions. We also gestured towards a proof that even Q (and hence, a
fortiori PA) can capture all the p.r. functions. Moreover we can do the express-
ing/capturing job while using w!s of low quantifier complexity — more precisely,
by using #, w!s.

Now, that key result about what Q can capture doesn’'t quite take us back
to the ideas in Chapter 4. Earlier, we talked about ‘su'ciently strong theories’,
where a theory is su"ciently strong if it captures all electively decidable prop-
erties of numbers. Chapter 9 only shows that Q and richer theories capture the
p.r. decidable properties, and those are only some of the electively decidable
properties. However, it will turn out that this weaker result is good enough for
our main purposes. Q’s being able to be capture all p.r. functions is enough to
make it the case that at least sensibly axiomatized theories that contain Q are
incomplete (assuming they are sound, or are consistent and satisfy another mod-
est condition). What counts as being ‘sensibly axiomatized’ will become clear
soon enough!

10.1 Godel-numbering

It was David Hilbert who first emphasised that the syntactic objects that com-
prise formal theories (the wls, the proofs) are Pnite objects, and so we only
need a mathematics of finite objects to deal with the syntactic properties of
theories. We'll return to discuss the significance that this insight had for Hilbert
in Chapter 15.

But for now, we want Gddel’s great twist on Hilbert’s insight: when we are
dealing with finite objects, we can associate them with numerical codes. Hence we
can use arithmetic to talk — via the coding — about syntactic properties of theories
(including the syntactic properties of theories of arithmetic in particular).

Nowadays, of course, this idea seems almost trite, for we are so very used to
the notion that any finite data — in elect, any data that a finite computer can
handle — can be digitized, i.e. rendered as binary numbers. But in the late 1920s
this wonderfully simple but powerful idea must have seemed revelatory.

75

10 The arithmetization of syntax

In this section, then, we develop the idea of coding via Godel-numbering
(compare Defn. 14).

We'll concentrate first on the particular case of coding up expressions of the
language L 4. There are various ways of doing the coding. We might use a version
of the sort of coding we met in §3.3. But here we’ll use the general style of coding
used by Godel himself. Nothing really hangs on the choice: any coding scheme
will do so long as it is ‘normal’ in a sense which we’ll explain shortly.

Suppose, then, that our version of L4 has the usual logical symbols (connec-
tives, quantifiers, identity, brackets), and symbols for zero and for the successor,
addition and multiplication functions: associate all those symbols with odd num-
bers (dilerent symbol, dilerent code number, of course). L 4, as a standard first-
order language, also has the usual inexhaustible supply of variables, which we’ll
associate with even numbers. So, to pin that down, let’s fix on this preliminary
series of basic codes

- AV o>V 3 = () 0S + X xyz...
135 7 9 11131517 1921232527246 ...

Our Godelian numbering scheme for expressions is now defined in terms of this
table of basic codes as follows:

Defn. 38. Suppose that the expressior is the sequence ofc symbols and/or
variables sy, s, . . ., s;.. Then eOsGodel number (g.n.) is calculated by taking the
basic code-numbere; for each s; in turn, using ¢; as an exponent for thei-th
prime number ;, and then multiplying the results, to get2° - 3% .5%7k,

For example:

i. The single symbol ‘S’ has the g.n. 223 (the first prime raised to the appro-
priate power as read o! from our correlation table of basic codes).

ii. The standard numeral SSO has the g.n. 223 . 323 . 52! (the product of the
first three primes raised to the appropriate powers).
iii. The w!
Jy (S0 +y) =SS0
has the g.n.
213 .34 . 5l7 723 1121 .1325.174.1919.2315.9923 . 3123 . 3721

That last number is, of course, enormous So when we say that it is elementary
to decode the resulting g.n. by taking the exponents of prime factors, we don’t
mean that the computation is quick. We mean that the computational routine
required for the task — namely, repeatedly extracting prime factors — involves no
more than the mechanical operations of elementary arithmetic. And of course,
because of the fundamental theorem of arithmetic, that numbers are uniquely

76

The arithmetization of syntactic properties/relations

decomposable into prime factors, the decoding of any number will be unique -
either a particular expression or a null result.

Now, as well as talking about w!s via their code numbers, we’ll want to talk
about proofs via their code numbers. But how do we code for proof-arrays?

The details will obviously depend on the kind of proof system we adopt for the
theory we are using. Suppose though, for simplicity, we consider theories with a
Hilbert-style axiomatic system of logic. In this rather old-fashioned framework,
proof-arrays are simply linear sequencesof w!s. A nice way of coding these
sequences is by what we’ll call super Gedel numbers

Defn. 39. Given a sequence of w!s or other expressionsy, es, ..., e,, we Prst
code eache; by a regular g.n. g;, to yield a corresponding sequence of humbers
g1, 92, - - -, 9n- We then encode this sequence of regular Gedel numbers using a
single super g.n. by repeating the trick of multiplying powers of primes to get
291 .392 .59 . .9,

Decoding a super g.n. therefore involves two steps of taking prime factors: first
find the sequence of exponents of the prime factors of the super g.n.; then treat
each of those exponents in turn as a regular g.n., and take prime factors again
to arrive back at a sequence of expressions.

10.2 The arithmetization of syntactic properties/relations

In this section, we will continue to focus on the language L 4 and on the particular
theory PA which is built in that language. But as we will stress in the next section,
similar results will apply mutatis mutandis to any sensibly axiomatized formal
theory.

Recall Defn. 15 from §3.4. In the present context, this becomes:

Defn. 40. Given our scheme for Gedel-numberindgA expressions and sequences
of expressions,

W!I (n) il nis the Gedel number of alL 4 w!.

Sent(n) i! n is the Goedel number of aL 4 sentence.

Prf (m,n) i m is the super Godel number of &A-proof of the L 4
sentence with code numben.

Then we have the following key result:

Theorem 31. W! and Sent are p.r. decidable properties; and Prf is a p.r.
decidable relation.

Now, writing at the very beginning of the period when concepts of computation
were being forged, Godel couldn’t expect his audience to take anything on trust
about what was or wasn’t ‘rekursiv’ or — as we would now put it — primitive
recursive. He therefore had to do all the hard work of explicitly showing how

7

10 The arithmetization of syntax

to define these properties (or their characteristic functions) by a long chain of
definitions by composition and recursion.

However, assuming only a very modest familiarity with the ideas of computer
programs and p.r. functions, and so accepting Theorem 23, we can perhaps
short-cut all that elort and be entirely persuaded by the following:

Informal proof. To determine whether W! (n), first decode n: a simple algorithm
does the job, one doesn’t require an open-ended search. Now ask: is the resulting
expression a w! of the language L 4? That’s algorithmically decidable — and again
no open-ended search is required: the length of the required computation will be
fixed by the length of the expression. So neither stage of the decision procedure
will involve any open-ended search; they can be done by programs using just
bounded ‘for’ loops.

The second stage of this decision procedure, at one level, works on simple
strings of symbols: but we can implement this as working on their ASCII codes
or whatever. So we can think of the whole computation as done ultimately using
only “for’ loops operating on numbers; so W! is indeed p.r. decidable. Similarly
for Sent(n)

To determine whether Prf (m,n), first doubly decode the super Godel num-
ber m: that’s a mechanical exercise. Now ask: is the result a sequence of PA
wls? That’s algorithmically decidable (since it is decidable whether each sepa-
rate string of symbols is a w!). If it does decode into a sequence of w!s, ask
next: is this sequence a properly constructed PA proof? That’s decidable too
(check whether each w! in the sequence is either an axiom or is an immediate
consequence of previous w!s by one of the rules of inference of PA’s Hilbert-style
logical system). If the sequence is a proof, ask: does its final w! have the g.n.
n? That’s again decidable. Finally, assuming theorems have to be sentences, ask
whether Sent(n) is true.

Putting things together, there is a computational procedure for telling whether
Prf (m,n) holds. Moreover, at each and every stage, the computation involved
is once more a straightforward, bounded procedure without any open-ended
searches. The length of the sequence of expressions with code m puts a ceiling
on the work we have to do. So the procedure is one that can be written up as a
program using only bounded ‘for’-loops. Hence Prf is also p.r. decidable. O

10.3 Generalizing

Now using a subscript to highlight the particular theory we are considering,
Theorem 31 tells us that the key relation Prf ;5 defined using one particular
Godel-numbering scheme is primitive recursive.

However, our adopted numbering scheme was fairly arbitrarily chosen. We
could, for example, shu&e around the preliminary assignment of basic codes to
get a dilerent Godel-style numbering scheme; or we could use a scheme that
isn’t based on powers of primes. So could it be that a relation like Prf 5 is p.r.

78

Generalizing

when defined in terms of our particular numbering scheme and not p.r. when
defined in terms of some alternative but equally acceptable scheme?

Well, what counts as ‘acceptable’ here? The key feature of our Godelian
scheme is this: there is a pair of algorithms, one of which takes us from an
L 4 expression to its code number, the other of which takes us back again from
the code number to the original expression. Moreover, in following through these
algorithms, the upper length of the computation is determined by the length of
the L 4 expression to be encoded or the size of the number to be decoded: we
dondt have to go on unbounded search@he computations can be done just
using bounded ‘for’ loops.

And now let’s generalize this idea. We will say:

Defn. 41. A normal Gedel-numbering scheme is one which deploys coding and
decoding algorithms which donOt involve any open-ended searches.

Back in Defn. 14, we required the coding and decoding procedures in a Godel-
numbering scheme to be elective procedures. We are now tightening this re-
guirement. From now on, we assume that the required elective procedures can
be done without open-ended searches, so that our coding schemes are normal.
And with this assumption in place, we can simply remark that, whichever (nor-
mal) coding scheme for PA we choose, the informal proof we gave will go through
as before: Prf p,, now redefined using the new scheme, will still be p.r. decidable.

What about Prf for other theories 7' (assuming a normal Godel-numbering
scheme is in play)? In other words, take the relation that holds between m and
n when (according to our scheme) m codes for a T-proof of the sentence coded
by n; is this a p.r. relation again for other theories 7'?

Suppose T is not just electively axiomatized, but is put together so that we
can mechanically check whether a purported T-proof is indeed a kosher proof
without having to set out on an unbounded search (i.e. there is a limit known in
advance to the number of steps it will take to check our proof). In other words,
suppose that checking a proof can be done by a procedure that can be regimented
using nothing more exotic then ‘for’ loops. Then, by the same informal proof as
before, the relation Prf; which holds when m numbers a proof of the w! with
number n will still be primitive recursive.

Let’s say that

Defn. 42. A theory T is p.r. axiomatized when it is indeed so axiomatized as
to make the relation Prfr (debned using a normal Gedel-numbering scheme) a
primitive recursive relation.

Then any usual kind of formal theory you dream up will in fact be p.r. axiom-
atized if it is electively axiomatized at all. We never in practice formalize a
theory in such a way that (i) it is electively axiomatized, but (ii) we can only
electively check whether a given array of expressions is a well-constructed proof
by some unbounded search(es). Hold onto that thought!

79

10 The arithmetization of syntax

10.4 Some cute notation

Finally in this chapter, we introduce a really rather pretty bit of notation.
Assume we have chosen some system for Godel-numbering the expressions of
a language L. Then

Defn. 43. If ¢ is an L-expression, then weOll use @#Qin our logicians’ aug-
mented English to denote ¢Os Gedel number. And we usé& &0 as an abbrevia-
tion in our formal arithmetic for the standard numeral for the number" o#.

Borrowing corner quotes for this new use is quite appropriate because the number
"p# can be thought of as referring to the expression ¢ via our coding scheme.
(Sometimes, we’ll write the likes of "U# where U abbreviates an L, w!: we
mean here, of course, the Godel-number for the unabbreviated original w! that
U stands in for.)

And given we used the overlined expression ‘n’ to abbreviate the standard
numeral for the number n, it is quite natural to use the same convention again
in using the overlined " p# to abbreviate the standard numeral for "p#.! A
simple example to illustrate:

1. ‘'SS0’ is an L4 expression, the standard numeral for 2.
2. On our numbering scheme "SS0#, the g.n. of ‘SS0’, is 223 . 323 . 521,

3. Then “'SS0# is shorthand, used as an abbreviation for the standard L 4-
numeral for that g.n., i.e. as an abbreviation for ‘SSS . .. S0’ with 223.323.521
occurrences of ‘S’!

In IGT2, I use the corner-bracket notation to stand both for Gédel numbers and (still with-
out overlining) for the standard numerals for Gédel numbers, letting context disambiguate.
That too is a common convention. But in these notes, in the interests of maximal clarity
— if only as a helpful ladder that you can throw away once climbed! — I will here use the
clumsier overlining notation for numerals for Gédel numbers.

80

